Juárez-Maldonado R, Medina-Noyola M
Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, México.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051503. doi: 10.1103/PhysRevE.77.051503. Epub 2008 May 23.
We present a first-principles theory of dynamic arrest in colloidal mixtures based on the multicomponent self-consistent generalized Langevin equation theory of colloid dynamics [M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E 72, 031107 (2005); M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E76, 039902 (2007)]. We illustrate its application with a description of dynamic arrest in two simple model colloidal mixtures: namely, hard-sphere and repulsive Yukawa binary mixtures. Our results include observation of the two patterns of dynamic arrest, one in which both species become simultaneously arrested and the other involving the sequential arrest of the two species. The latter case gives rise to mixed states in which one species is arrested while the other species remains mobile. We also derive the ("bifurcation" or fixed-point") equations for the nonergodic parameters of the system, which takes the surprisingly simple form of a system of coupled equations for the localization length of the particles of each species. The solution of this system of equations indicates unambiguously which species is arrested (finite localization length) and which species remains ergodic (infinite localization length). As a result, we are able to draw the entire ergodic-nonergodic phase diagram of the binary hard-sphere mixture.
我们基于胶体动力学的多组分自洽广义朗之万方程理论[M. A. 查韦斯 - 罗霍和M. 梅迪纳 - 诺约拉,《物理评论E》72, 031107 (2005); M. A. 查韦斯 - 罗霍和M. 梅迪纳 - 诺约拉,《物理评论E》76, 039902 (2007)],提出了一种关于胶体混合物中动态阻滞的第一性原理理论。我们通过描述两种简单的模型胶体混合物中的动态阻滞来阐述其应用:即硬球二元混合物和排斥性汤川二元混合物。我们的结果包括观察到两种动态阻滞模式,一种是两种组分同时被阻滞,另一种是两种组分依次被阻滞。后一种情况会产生混合态,其中一种组分被阻滞而另一种组分仍保持可移动。我们还推导了系统非遍历参数的(“分岔”或“不动点”)方程,其形式出人意料地简单,是一个关于每种组分粒子局域长度的耦合方程组。该方程组的解明确地指出了哪种组分被阻滞(有限局域长度)以及哪种组分仍保持遍历(无限局域长度)。因此,我们能够绘制出二元硬球混合物的整个遍历 - 非遍历相图。