Yu Yan-Mei, Backofen Rainer, Voigt Axel
Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051605. doi: 10.1103/PhysRevE.77.051605. Epub 2008 May 22.
By using a phase-field model, we simulate formation and growth of stripe arrays starting with anisotropic growth of islands under the Ehrlich-Schwoebel barrier on metal bcc(110) surfaces. The anisotropy is incorporated in terms of attachment kinetics that is locally limited at the island edge aligned to the y axis (or 100 ) and instantaneous at the island edge aligned to the x axis (or 110 ). By reproducing the stripe arrays under various anisotropy magnitudes, we investigate dynamics of formation and growth of the stripe arrays. While enhancing coarsening in the y direction, the anisotropy suppresses coarsening in the x direction at the early stage, which contributes to formation of stripe arrays. At long times, the stripe arrays develop the quasiperiodic uniaxial structure with the selected transversal slope and the decreasing longitudinal slope as consequence of competition between coarsening and roughening. At the case of the large anisotropy magnitude, the fast roughening is caused by the strongly limited attachment kinetics, where the transversal coarsening turns fast and then the uniaxial growth is broken finally. For the weak roughening at the case of the reduced anisotropy magnitude, the slow transversal coarsening is achieved with the fast longitudinal coarsening, which contributes to the stripe arrays of the regular period and the increasing uniaxial length. Such arrays have the potential to be used as templates to grow one-dimensional nanostructures.