Haselwandter Christoph A, Vvedensky Dimitri D
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061129. doi: 10.1103/PhysRevE.77.061129. Epub 2008 Jun 20.
We present the application of a method [C. A. Haselwandter and D. D. Vvedensky, Phys. Rev. E 76, 041115 (2007)] for deriving stochastic partial differential equations from atomistic processes to the morphological evolution of epitaxial surfaces driven by the deposition of new material. Although formally identical to the one-dimensional (1D) systems considered previously, our methodology presents substantial additional technical issues when applied to two-dimensional (2D) surfaces. Once these are addressed, subsequent coarse-graining is accomplished as before by calculating renormalization-group (RG) trajectories from initial conditions determined by the regularized atomistic models. Our applications are to the Edwards-Wilkinson (EW) model [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982)], the Wolf-Villain (WV) model [D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990)], and a model with concurrent random deposition and surface diffusion. With our rules for the EW model no appreciable crossover is obtained for either 1D or 2D substrates. For the 1D WV model, discussed previously, our analysis reproduces the crossover sequence known from kinetic Monte Carlo (KMC) simulations, but for the 2D WV model, we find a transition from smooth to unstable growth under repeated coarse-graining. Concurrent surface diffusion does not change this behavior, but can lead to extended transient regimes with kinetic roughening. This provides an explanation of recent experiments on Ge(001) with the intriguing conclusion that the same relaxation mechanism responsible for ordered structures during the early stages of growth also produces an instability at longer times that leads to epitaxial breakdown. The RG trajectories calculated for concurrent random deposition and surface diffusion reproduce the crossover sequences observed with KMC simulations for all values of the model parameters, and asymptotically always approach the fixed point corresponding to the equation proposed by Villain [J. Phys. I 1, 19 (1991)] and by Lai and Das Sarma [Phys. Rev. Lett. 66, 2899 (1991)]. We conclude with a discussion of the application of our methodology to other growth settings.
我们展示了一种方法[C. A. 哈塞尔万德特和D. D. 韦德ensky,《物理评论E》76,041115 (2007)]的应用,该方法用于从原子过程推导随机偏微分方程,以研究由新材料沉积驱动的外延表面的形态演化。尽管在形式上与先前考虑的一维(1D)系统相同,但我们的方法在应用于二维(2D)表面时存在大量额外的技术问题。一旦解决了这些问题,随后的粗粒化就像以前一样通过从由正则化原子模型确定的初始条件计算重整化群(RG)轨迹来完成。我们的应用涉及爱德华兹 - 威尔金森(EW)模型[S. F. 爱德华兹和D. R. 威尔金森,《伦敦皇家学会学报》,A辑381,17 (1982)]、沃尔夫 - 维兰(WV)模型[D. E. 沃尔夫和J. 维兰,《欧洲物理快报》13,389 (1990)]以及一个同时包含随机沉积和表面扩散的模型。根据我们的EW模型规则,对于1D或2D衬底都没有得到明显的交叉现象。对于先前讨论过的1D WV模型,我们的分析重现了从动力学蒙特卡罗(KMC)模拟中已知的交叉序列,但对于2D WV模型,我们发现在重复粗粒化过程中从平滑生长转变为不稳定生长。同时发生的表面扩散不会改变这种行为,但会导致具有动力学粗糙化的扩展瞬态阶段。这为最近关于Ge(001)的实验提供了解释,得出了一个有趣的结论,即在生长早期负责有序结构的相同弛豫机制在更长时间也会产生导致外延击穿的不稳定性。对于同时发生的随机沉积和表面扩散计算得到的RG轨迹,对于模型参数的所有值都重现了KMC模拟中观察到的交叉序列,并且渐近地总是趋近于对应于维兰[《物理I》1,19 (1991)]以及赖和达斯·萨尔马[《物理评论快报》66,2899 (1991)]提出的方程的不动点。我们最后讨论了我们的方法在其他生长环境中的应用。