Furlani E P, Ng K C
Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo, Buffalo, New York, 14260, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061914. doi: 10.1103/PhysRevE.77.061914. Epub 2008 Jun 17.
We present a model for predicting the transport of biofunctional magnetic nanoparticles in a passive magnetophoretic system that consists of a fluidic chamber positioned above a rare-earth magnet. The model is based on a drift-diffusion equation that governs the particle concentration in the chamber. We solve this equation numerically using the finite volume method. We apply the model to the magnetofection process wherein the magnetic force produced by the magnet attracts magnetic carrier particles with surface-bound gene vectors toward the bottom of the chamber for transfection with target cells. We study particle transport and accumulation as a function of key variables. Our analysis indicates that the particles are magnetically focused toward the center of the chamber during transport, and that the rate of accumulation at the base can be enhanced using larger particles and/or by reducing the spacing between the magnet and the chamber. The model provides insight into the physics of particle transport at the nanoscale and enables rapid parametric analysis of particle accumulation, which is useful for optimizing novel magnetofection systems.
我们提出了一个用于预测生物功能磁性纳米颗粒在被动磁泳系统中传输的模型,该系统由位于稀土磁体上方的流体腔室组成。该模型基于一个控制腔室内颗粒浓度的漂移扩散方程。我们使用有限体积法对该方程进行数值求解。我们将该模型应用于磁转染过程,其中磁体产生的磁力将带有表面结合基因载体的磁性载体颗粒吸引到腔室底部,以便与靶细胞进行转染。我们研究了颗粒传输和积累与关键变量的函数关系。我们的分析表明,颗粒在传输过程中被磁聚焦到腔室中心,并且使用更大的颗粒和/或减小磁体与腔室之间的间距可以提高在底部的积累速率。该模型为纳米尺度下颗粒传输的物理过程提供了深入理解,并能够对颗粒积累进行快速参数分析,这对于优化新型磁转染系统很有用。