Ryker Sarah J, Small Mitchell J
Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Risk Anal. 2008 Jun;28(3):653-66. doi: 10.1111/j.1539-6924.2008.00985.x.
Characterizing all possible chemical mixtures in drinking water is a potentially overwhelming project, and the task of assessing each mixture's net toxicity even more daunting. We propose that analyzing occurrence information on mixtures in drinking water may help to narrow the priorities and inform the approaches taken by researchers in mixture toxicology. To illustrate the utility of environmental data for refining the mixtures problem, we use a recent compilation of national ground-water-quality data to examine proposed U.S. Environmental Protection Agency (EPA) and Agency for Toxic Substances and Disease Registry (ATSDR) models of noncancer mixture toxicity. We use data on the occurrence of binary and ternary mixtures of arsenic, cadmium, and manganese to parameterize an additive model and compute hazard index scores for each drinking-water source in the data set. We also use partially parameterized interaction models to perform a bounding analysis estimating the interaction potential of several binary and ternary mixtures for which the toxicological literature is limited. From these results, we estimate a relative value of additional toxicological information for each mixture. For example, we find that according to the U.S. EPA's interaction model, the levels of arsenic and cadmium found in U.S. drinking water are unlikely to have synergistic cardiovascular effects, but the same mixture's potential for synergistic neurological effects merits further study. Similar analysis could in future be used to prioritize toxicological studies based on their potential to reduce scientific and regulatory uncertainty. Environmental data may also provide a means to explore the implications of alternative risk models for the toxicity and interaction of complex mixtures.
鉴定饮用水中所有可能的化学混合物是一项潜在的艰巨工程,而评估每种混合物的净毒性任务则更加艰巨。我们认为,分析饮用水中混合物的出现信息可能有助于缩小研究重点,并为混合物毒理学研究人员采取的方法提供参考。为了说明环境数据在解决混合物问题方面的作用,我们利用最近汇编的全国地下水质量数据,来检验美国环境保护局(EPA)和有毒物质与疾病登记署(ATSDR)提出的非癌症混合物毒性模型。我们使用关于砷、镉和锰的二元和三元混合物出现情况的数据,对一个加性模型进行参数化,并计算数据集中每个饮用水源的危害指数得分。我们还使用部分参数化的相互作用模型进行边界分析,估计一些毒理学文献有限的二元和三元混合物的相互作用潜力。根据这些结果,我们估计了每种混合物额外毒理学信息的相对价值。例如,我们发现,根据美国环保署的相互作用模型,在美国饮用水中发现的砷和镉水平不太可能产生协同心血管效应,但同一混合物产生协同神经效应的可能性值得进一步研究。未来,类似的分析可用于根据毒理学研究减少科学和监管不确定性的潜力来确定研究重点。环境数据还可能提供一种手段,来探索替代风险模型对复杂混合物毒性和相互作用的影响。