Lavoie Mathieu, Abou Elela Sherif
Groupe ARN/RNA Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Biochemistry. 2008 Aug 19;47(33):8514-26. doi: 10.1021/bi800238u. Epub 2008 Jul 23.
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.
细菌核糖核酸酶III家族的成员能够识别多种几乎没有共同特征的短结构RNA。目前尚不清楚这组酶如何在维持广泛底物基础的同时保持高切割保真度。在这里,我们表明核糖核酸酶III(Rnt1p)的酵母同源物利用2'-OH依赖性相互作用网络来识别具有不同结构的底物。我们设计了一系列二分体底物,以区分结合缺陷和切割缺陷。每个底物都经过工程改造,携带单个或多个2'-O-甲基或2'-氟核糖核苷酸取代,以防止与特定核苷酸或核苷酸组形成氢键。有趣的是,在切割位点附近引入2'-O-甲基核糖核苷酸提高了催化速率,表明切割不需要2'-OH。用2'-O-甲基核糖核苷酸取代已知Rnt1p结合位点中的核苷酸会抑制切割,而单个2'-氟核糖核苷酸取代则不会。这表明虽然没有单个2'-OH对Rnt1p切割至关重要,但底物结构的微小变化是不被容忍的。引人注目的是,几个核苷酸取代大大增加了底物解离常数,而对米氏常数或催化速率几乎没有影响。总之,结果表明Rnt1p利用核苷酸相互作用网络来识别其底物并支持两种不同的结合模式。一种模式主要由双链RNA结合结构域介导,导致形成稳定的RNA/蛋白质复合物,而另一种模式需要核酸酶和N端结构域的存在并导致RNA切割。