Tscherbul T V, Krems R V
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
J Chem Phys. 2008 Jul 21;129(3):034112. doi: 10.1063/1.2954021.
We present a theory for rigorous quantum scattering calculations of probabilities for chemical reactions of atoms with diatomic molecules in the presence of an external electric field. The approach is based on the fully uncoupled basis set representation of the total wave function in the space-fixed coordinate frame, the Fock-Delves hyperspherical coordinates, and the adiabatic partitioning of the total Hamiltonian of the reactive system. The adiabatic channel wave functions are expanded in basis sets of hyperangular functions corresponding to different reaction arrangements, and the interactions with external fields are included in each chemical arrangement separately. We apply the theory to examine the effects of electric fields on the chemical reactions of LiF molecules with H atoms and HF molecules with Li atoms at low temperatures and show that electric fields may enhance the probability of chemical reactions and modify reactive scattering resonances by coupling the rotational states of the reactants. Our preliminary results suggest that chemical reactions of polar molecules at temperatures below 1 K can be selectively manipulated with dc electric fields and microwave laser radiation.
我们提出了一种理论,用于在外部电场存在的情况下,对原子与双原子分子化学反应概率进行严格的量子散射计算。该方法基于空间固定坐标系中总波函数的完全解耦基组表示、福克 - 德尔夫斯超球坐标以及反应系统总哈密顿量的绝热划分。绝热通道波函数在对应于不同反应排列的超角函数基组中展开,并且与外部场的相互作用分别包含在每种化学排列中。我们应用该理论研究了电场对低温下LiF分子与H原子以及HF分子与Li原子化学反应的影响,结果表明电场可通过耦合反应物的转动状态来提高化学反应概率并改变反应散射共振。我们的初步结果表明,在低于1 K的温度下,极性分子的化学反应可以通过直流电场和微波激光辐射进行选择性操控。