Asghari Mohammad H, Azaña José
Institut National de la Recherche Scientifique-Energie, Matériaux et Télécommunications, Montreal, Québec, Canada.
Opt Express. 2008 Jul 21;16(15):11459-69. doi: 10.1364/oe.16.011459.
In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.
与电子领域的同类器件完全类似,光子时间积分器是构建用于超快信息处理和计算的全光电路的基本构建模块。在这项工作中,我们介绍了一种实现全光任意阶时间积分器的简单通用方法。我们证明,通过将输入光波形简单地通过沿其轴向轮廓包含(N)个(\pi)相移的单个均匀光纤/波导布拉格光栅(BG)传播,就可以获得输入光波形复场包络的第(N)次累积时间积分。我们在此推导了基于多相移BG的光子积分器的设计规范。我们表明,只要每个均匀光栅段(由相移分隔的段)足够长,使得其相关的峰值反射率接近100%,BG结构中的相移就可以沿光栅长度任意定位。通过假设全光纤实现的数值模拟展示了所得设计。我们的模拟表明,所提出的方法可以使用易于实现的光致光纤BG结构在数十GHz的范围内提供光操作带宽。