Suppr超能文献

金精三羧酸制剂对微小隐孢子虫的体外和体内活性

In vitro and in vivo activity of aurintricarboxylic acid preparations against Cryptosporidium parvum.

作者信息

Klein Pavel, Cirioni Oscar, Giacometti Andrea, Scalise Giorgio

机构信息

Institute of Animal Science, Praha 10, Uhrineves, Czech Republic.

出版信息

J Antimicrob Chemother. 2008 Nov;62(5):1101-4. doi: 10.1093/jac/dkn303. Epub 2008 Jul 23.

Abstract

OBJECTIVES

The aim of this study was to assess the effect of commercial aurintricarboxylic acid (ATA) against Cryptosporidium parvum.

METHODS

The anticryptosporidial effect of ATA was evaluated in vitro using cell culture and double fluorogenic staining, and in vivo in experimentally infected neonatal C57BL/6 mice. Mice were orally treated for 9 consecutive days starting on the day of infection with daily ATA doses of 50 and 100 micromol/kg. Paromomycin (100 mg/kg) was used as a positive control.

RESULTS

In both in vitro models, ATA at concentrations of 100 and 10 micromol/L completely inhibited sporozoites within 10 and 60 min, respectively. Viability of oocysts exposed to 100 micromol/L and assessed by flow cytometry and in cell culture was reduced by 65% and 61%, respectively. The treatment of neonatal mice with a daily ATA dose of 100 micromol/kg led to 97-99% inhibition of infection without any observable negative effects on the animals. In comparison, the mean reduction of infection for paromomycin was 79-84%.

CONCLUSIONS

ATA exerted high anticryptosporidial activity and should be considered for further study.

摘要

目的

本研究旨在评估商用金精三羧酸(ATA)对微小隐孢子虫的作用。

方法

使用细胞培养和双荧光染色在体外评估ATA的抗隐孢子虫作用,并在实验性感染的新生C57BL/6小鼠体内进行评估。从感染当天开始,小鼠连续9天每天口服ATA,剂量分别为50和100微摩尔/千克。巴龙霉素(100毫克/千克)用作阳性对照。

结果

在两种体外模型中,浓度为100和10微摩尔/升的ATA分别在10分钟和60分钟内完全抑制子孢子。通过流式细胞术和细胞培养评估,暴露于100微摩尔/升的卵囊活力分别降低了65%和61%。每天给新生小鼠口服100微摩尔/千克的ATA可导致感染抑制率达97%-99%,且对动物无任何明显负面影响。相比之下,巴龙霉素的平均感染降低率为79%-84%。

结论

ATA具有较高的抗隐孢子虫活性,应考虑进一步研究。

相似文献

1
In vitro and in vivo activity of aurintricarboxylic acid preparations against Cryptosporidium parvum.
J Antimicrob Chemother. 2008 Nov;62(5):1101-4. doi: 10.1093/jac/dkn303. Epub 2008 Jul 23.
2
Efficacy of chitosan, a natural polysaccharide, against Cryptosporidium parvum in vitro and in vivo in neonatal mice.
Exp Parasitol. 2018 Nov;194:1-8. doi: 10.1016/j.exppara.2018.09.003. Epub 2018 Sep 17.
3
Efficacy of mangiferin against Cryptosporidium parvum in a neonatal mouse model.
Parasitol Res. 2006 Jul;99(2):184-8. doi: 10.1007/s00436-006-0165-4. Epub 2006 Mar 18.
4
Development of particulate drug formulation against C. parvum: Formulation, characterization and in vivo efficacy.
Eur J Pharm Sci. 2016 Sep 20;92:74-85. doi: 10.1016/j.ejps.2016.06.023. Epub 2016 Jul 2.
5
Curcumin: A promising treatment for Cryptosporidium parvum infection in immunosuppressed BALB/c mice.
Exp Parasitol. 2018 Dec;195:59-65. doi: 10.1016/j.exppara.2018.10.008. Epub 2018 Oct 29.
6
Bobel-24 activity against Cryptosporidium parvum in cell culture and in a SCID mouse model.
Antimicrob Agents Chemother. 2008 Mar;52(3):1150-2. doi: 10.1128/AAC.01019-07. Epub 2007 Dec 26.
7
Efficacy of pyrvinium pamoate against Cryptosporidium parvum infection in vitro and in a neonatal mouse model.
Antimicrob Agents Chemother. 2008 Sep;52(9):3106-12. doi: 10.1128/AAC.00207-08. Epub 2008 Jun 30.
9
Inhibitory activity of chitosan nanoparticles against Cryptosporidium parvum oocysts.
Parasitol Res. 2019 Jul;118(7):2053-2063. doi: 10.1007/s00436-019-06364-0. Epub 2019 Jun 11.
10
A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis.
PLoS Negl Trop Dis. 2017 Feb 3;11(2):e0005373. doi: 10.1371/journal.pntd.0005373. eCollection 2017 Feb.

引用本文的文献

1
Identification and characterization of aurintricarboxylic acid as a potential inhibitor of SARS-CoV-2 PLpro.
Int J Biol Macromol. 2023 Mar 1;230:123347. doi: 10.1016/j.ijbiomac.2023.123347. Epub 2023 Jan 20.
3
Inhibition of Orbivirus Replication by Aurintricarboxylic Acid.
Int J Mol Sci. 2020 Oct 2;21(19):7294. doi: 10.3390/ijms21197294.
4
Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid.
Front Microbiol. 2019 Apr 12;10:718. doi: 10.3389/fmicb.2019.00718. eCollection 2019.
5
Mechanism of graphene-induced cytotoxicity: Role of endonucleases.
J Appl Toxicol. 2017 Nov;37(11):1325-1332. doi: 10.1002/jat.3462. Epub 2017 May 24.

本文引用的文献

2
Present and future control of cryptosporidiosis in humans and animals.
Expert Rev Vaccines. 2004 Dec;3(6):669-71. doi: 10.1586/14760584.3.6.669.
3
Potent and selective inhibition of SARS coronavirus replication by aurintricarboxylic acid.
Biochem Biophys Res Commun. 2004 Aug 6;320(4):1199-203. doi: 10.1016/j.bbrc.2004.06.076.
5
In vitro effect on Cryptosporidium parvum of short-term exposure to cathelicidin peptides.
J Antimicrob Chemother. 2003 Apr;51(4):843-7. doi: 10.1093/jac/dkg149. Epub 2003 Feb 25.
6
Efficacy of treatment with paromomycin, azithromycin, and nitazoxanide in a patient with disseminated cryptosporidiosis.
Eur J Clin Microbiol Infect Dis. 1999 Dec;18(12):885-9. doi: 10.1007/s100960050424.
7
A review of the importance of cryptosporidiosis in farm animals.
Int J Parasitol. 1999 Aug;29(8):1269-87. doi: 10.1016/s0020-7519(99)00076-4.
8
Cryptosporidiosis: laboratory investigations and chemotherapy.
Adv Parasitol. 1998;40:187-221. doi: 10.1016/s0065-308x(08)60121-9.
9
Aurin tricarboxylic acid inhibits adhesion of platelets to subendothelium.
Thromb Res. 1996 Jan 15;81(2):177-85. doi: 10.1016/0049-3848(95)00234-0.
10
Cryptosporidium and cryptosporidiosis in man and animals.
Int J Parasitol. 1995 Feb;25(2):139-95. doi: 10.1016/0020-7519(94)e0059-v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验