Suppr超能文献

电压依赖性阴离子通道调节:胞质蛋白和线粒体脂质的作用

VDAC regulation: role of cytosolic proteins and mitochondrial lipids.

作者信息

Rostovtseva Tatiana K, Bezrukov Sergey M

机构信息

Laboratory of Physical and Structural Biology, Program in Physical Biology, NICHD, National Institutes of Health, Rockville Pike, Bethesda, MD 20892, USA.

出版信息

J Bioenerg Biomembr. 2008 Jun;40(3):163-70. doi: 10.1007/s10863-008-9145-y.

Abstract

It was recently asserted that the voltage-dependent anion channel (VDAC) serves as a global regulator, or governor, of mitochondrial function (Lemasters and Holmuhamedov, Biochim Biophys Acta 1762:181-190, 2006). Indeed, VDAC, positioned on the interface between mitochondria and the cytosol (Colombini, Mol Cell Biochem 256:107-115, 2004), is at the control point of mitochondria life and death. This large channel plays the role of a "switch" that defines in which direction mitochondria will go: to normal respiration or to suppression of mitochondria metabolism that leads to apoptosis and cell death. As the most abundant protein in the mitochondrial outer membrane (MOM), VDAC is known to be responsible for ATP/ADP exchange and for the fluxes of other metabolites across MOM. It controls them by switching between the open and "closed" states that are virtually impermeable to ATP and ADP. This control has dual importance: in maintaining normal mitochondria respiration and in triggering apoptosis when cytochrome c and other apoptogenic factors are released from the intermembrane space into the cytosol. Emerging evidence indicates that VDAC closure promotes apoptotic signals without direct involvement of VDAC in the permeability transition pore or hypothetical Bax-containing cytochrome c permeable pores. VDAC gating has been studied extensively for the last 30 years on reconstituted VDAC channels. In this review we focus exclusively on physiologically relevant regulators of VDAC gating such as endogenous cytosolic proteins and mitochondrial lipids. Closure of VDAC induced by such dissimilar cytosolic proteins as pro-apoptotic tBid and dimeric tubulin is compared to show that the involved mechanisms are rather distinct. While tBid mostly modulates VDAC voltage gating, tubulin blocks the channel with the efficiency of blockage controlled by voltage. We also discuss how characteristic mitochondrial lipids, phospatidylethanolamine and cardiolipin, could regulate VDAC gating. Overall, we demonstrate that VDAC gating is not just an observation made under artificial conditions of channel reconstitution but is a major mechanism of MOM permeability control.

摘要

最近有观点认为,电压依赖性阴离子通道(VDAC)是线粒体功能的全局调节因子或调控者(Lemasters和Holmuhamedov,《生物化学与生物物理学报》1762:181 - 190,2006年)。实际上,位于线粒体与胞质溶胶界面的VDAC(Colombini,《分子细胞生物化学》256:107 - 115,2004年),处于线粒体生死的控制点。这个大通道起着“开关”的作用,决定线粒体的走向:是进行正常呼吸还是抑制线粒体代谢,进而导致细胞凋亡和死亡。作为线粒体外膜(MOM)中含量最丰富的蛋白质,VDAC负责ATP/ADP交换以及其他代谢物跨MOM的通量。它通过在几乎对ATP和ADP不可渗透的开放和“关闭”状态之间切换来控制这些过程。这种控制具有双重重要性:维持线粒体正常呼吸以及当细胞色素c和其他凋亡因子从膜间隙释放到胞质溶胶中时触发细胞凋亡。新出现的证据表明,VDAC关闭促进凋亡信号,而VDAC并未直接参与通透性转换孔或假想的含Bax的细胞色素c通透孔。在过去30年里,人们对重组VDAC通道的VDAC门控进行了广泛研究。在本综述中,我们专门关注VDAC门控的生理相关调节因子,如内源性胞质蛋白和线粒体脂质。比较了由促凋亡tBid和二聚体微管蛋白等不同胞质蛋白诱导的VDAC关闭,以表明所涉及的机制相当不同。虽然tBid主要调节VDAC电压门控,但微管蛋白以受电压控制的阻断效率阻断通道。我们还讨论了特征性线粒体脂质磷脂酰乙醇胺和心磷脂如何调节VDAC门控。总体而言,我们证明VDAC门控不仅仅是在通道重组的人工条件下的一种观察结果,而是MOM通透性控制的主要机制。

相似文献

1
VDAC regulation: role of cytosolic proteins and mitochondrial lipids.
J Bioenerg Biomembr. 2008 Jun;40(3):163-70. doi: 10.1007/s10863-008-9145-y.
2
Voltage gating of VDAC is regulated by nonlamellar lipids of mitochondrial membranes.
J Biol Chem. 2006 Dec 8;281(49):37496-506. doi: 10.1074/jbc.M602548200. Epub 2006 Sep 21.
3
VDAC inhibition by tubulin and its physiological implications.
Biochim Biophys Acta. 2012 Jun;1818(6):1526-35. doi: 10.1016/j.bbamem.2011.11.004. Epub 2011 Nov 9.
4
Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18746-51. doi: 10.1073/pnas.0806303105. Epub 2008 Nov 24.
6
Phosphorylation of rat brain mitochondrial voltage-dependent anion as a potential tool to control leakage of cytochrome c.
J Neurochem. 2006 Aug;98(3):670-6. doi: 10.1111/j.1471-4159.2006.03853.x. Epub 2006 Jun 19.
7
VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis.
J Bioenerg Biomembr. 2008 Jun;40(3):199-205. doi: 10.1007/s10863-008-9142-1.
8
Bid, but not Bax, regulates VDAC channels.
J Biol Chem. 2004 Apr 2;279(14):13575-83. doi: 10.1074/jbc.M310593200. Epub 2004 Jan 16.
9
Acidification asymmetrically affects voltage-dependent anion channel implicating the involvement of salt bridges.
J Biol Chem. 2014 Aug 22;289(34):23670-82. doi: 10.1074/jbc.M114.576314. Epub 2014 Jun 24.
10
A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC.
Proc Natl Acad Sci U S A. 2006 May 9;103(19):7494-9. doi: 10.1073/pnas.0602217103. Epub 2006 Apr 28.

引用本文的文献

1
Calcium signaling in postsynaptic mitochondria: mechanisms, dynamics, and role in ATP production.
Front Mol Neurosci. 2025 Jul 21;18:1621070. doi: 10.3389/fnmol.2025.1621070. eCollection 2025.
2
Beta-Barrel Channel Response to High Electric Fields: Functional Gating or Reversible Denaturation?
Int J Mol Sci. 2023 Nov 23;24(23):16655. doi: 10.3390/ijms242316655.
3
E as in Enigma: The Mysterious Role of the Voltage-Dependent Anion Channel Glutamate E73.
Int J Mol Sci. 2022 Dec 23;24(1):269. doi: 10.3390/ijms24010269.
4
Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer.
Philos Trans R Soc Lond B Biol Sci. 2022 Nov 21;377(1864):20210321. doi: 10.1098/rstb.2021.0321. Epub 2022 Oct 3.
5
How cytoskeletal proteins regulate mitochondrial energetics in cell physiology and diseases.
Philos Trans R Soc Lond B Biol Sci. 2022 Nov 21;377(1864):20210324. doi: 10.1098/rstb.2021.0324. Epub 2022 Oct 3.
7
Voltage-Dependent Anion Selective Channel 3: Unraveling Structural and Functional Features of the Least Known Porin Isoform.
Front Physiol. 2022 Jan 10;12:784867. doi: 10.3389/fphys.2021.784867. eCollection 2021.
8
Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target?
Front Physiol. 2021 Oct 4;12:730048. doi: 10.3389/fphys.2021.730048. eCollection 2021.

本文引用的文献

2
Microtubules in apoptosis induction: are they necessary?
Curr Cancer Drug Targets. 2007 Dec;7(8):713-29. doi: 10.2174/156800907783220480.
3
VDAC closure increases calcium ion flux.
Biochim Biophys Acta. 2007 Oct;1768(10):2510-5. doi: 10.1016/j.bbamem.2007.06.002. Epub 2007 Jun 12.
4
Phosphorothioate oligonucleotides block the VDAC channel.
Biophys J. 2007 Aug 15;93(4):1184-91. doi: 10.1529/biophysj.107.105379. Epub 2007 May 4.
5
Mitochondrial apoptosis without VDAC.
Nat Cell Biol. 2007 May;9(5):487-9. doi: 10.1038/ncb0507-487.
6
Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death.
Nat Cell Biol. 2007 May;9(5):550-5. doi: 10.1038/ncb1575. Epub 2007 Apr 8.
7
Phosphorothioate oligonucleotides reduce mitochondrial outer membrane permeability to ADP.
Am J Physiol Cell Physiol. 2007 Apr;292(4):C1388-97. doi: 10.1152/ajpcell.00490.2006. Epub 2006 Nov 29.
8
Theoretical evaluation of a possible nature of the outer membrane potential of mitochondria.
Eur Biophys J. 2006 Dec;36(1):57-66. doi: 10.1007/s00249-006-0101-7. Epub 2006 Oct 5.
9
Voltage gating of VDAC is regulated by nonlamellar lipids of mitochondrial membranes.
J Biol Chem. 2006 Dec 8;281(49):37496-506. doi: 10.1074/jbc.M602548200. Epub 2006 Sep 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验