Marcos J Víctor, Hornero Roberto, Alvarez Daniel, Del Campo Félix, Zamarrón Carlos, López Miguel
Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Spain.
Comput Methods Programs Biomed. 2008 Oct;92(1):79-89. doi: 10.1016/j.cmpb.2008.05.006. Epub 2008 Jul 30.
The aim of this study is to assess the ability of multilayer perceptron (MLP) neural networks as an assistant tool in the diagnosis of the obstructive sleep apnoea syndrome (OSAS). Non-linear features from nocturnal oxygen saturation (SaO(2)) recordings were used to discriminate between OSAS positive and negative patients. A total of 187 subjects suspected of suffering from OSAS (111 with a positive diagnosis of OSAS and 76 with a negative diagnosis of OSAS) took part in the study. The initial population was divided into training, validation and test sets for deriving and testing our neural network classifier. Three methods were applied to extract non-linear features from SaO(2) signals: approximate entropy (ApEn), central tendency measure (CTM) and Lempel-Ziv complexity (LZC). The selected MLP-based classifier provided a diagnostic accuracy of 85.5% (89.8% sensitivity and 79.4% specificity). Our neural network algorithm could represent a useful technique for OSAS detection. It could contribute to reduce the demand for polysomnographic studies in OSAS screening.
本研究的目的是评估多层感知器(MLP)神经网络作为阻塞性睡眠呼吸暂停综合征(OSAS)诊断辅助工具的能力。利用夜间血氧饱和度(SaO₂)记录的非线性特征来区分OSAS阳性和阴性患者。共有187名疑似患有OSAS的受试者(111名OSAS诊断阳性和76名OSAS诊断阴性)参与了该研究。初始人群被分为训练集、验证集和测试集,用于推导和测试我们的神经网络分类器。应用了三种方法从SaO₂信号中提取非线性特征:近似熵(ApEn)、中心趋势度量(CTM)和莱姆尔-齐夫复杂度(LZC)。所选的基于MLP的分类器提供了85.5%的诊断准确率(89.8%的灵敏度和79.4%的特异性)。我们的神经网络算法可能是一种用于OSAS检测的有用技术。它有助于减少OSAS筛查中多导睡眠图研究的需求。