Thierry Benjamin, Jasieniak Marek, de Smet Louis C P M, Vasilev Krasimir, Griesser Hans J
Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, SA 5095, Australia.
Langmuir. 2008 Sep 16;24(18):10187-95. doi: 10.1021/la801140u. Epub 2008 Aug 5.
A novel plasma functionalization process based on the pulsed plasma polymerization of allyl glycidyl ether is reported for the generation of robust and highly reactive epoxy-functionalized surfaces with well-defined chemical properties. Using a multitechnique approach including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and ellipsometry, the effect of the plasma deposition parameters on the creation and retention of epoxy surface functionalities was characterized systematically. Under optimal plasma polymerization conditions (duty cycle: 1 ms/20 ms and 1 ms/200 ms), reactive uniform films with a high level of reproducibility were prepared and successfully used to covalently immobilize the model protein lysozyme. Surface derivatization was also carried out with ethanolamine to probe for epoxy groups. The ethanolamine blocked surface resisted nonspecific adsorption of lysozyme. Lysozyme immobilization was also done via microcontact printing. These results show that allyl glycidyl ether plasma polymer layers are an attractive strategy to produce a reactive epoxy functionalized surface on a wide range of substrate materials for biochip and other biotechnology applications.
报道了一种基于烯丙基缩水甘油醚脉冲等离子体聚合的新型等离子体功能化工艺,用于生成具有明确化学性质的坚固且高反应性的环氧官能化表面。采用包括X射线光电子能谱(XPS)、飞行时间二次离子质谱(ToF-SIMS)、红外光谱(FT-IR)、原子力显微镜(AFM)和椭偏仪在内的多技术方法,系统地表征了等离子体沉积参数对环氧表面官能团的产生和保留的影响。在最佳等离子体聚合条件下(占空比:1 ms/20 ms和1 ms/200 ms),制备了具有高重现性的反应性均匀薄膜,并成功用于共价固定模型蛋白溶菌酶。还用乙醇胺进行了表面衍生化以探测环氧基团。乙醇胺封闭的表面可抵抗溶菌酶的非特异性吸附。溶菌酶的固定也通过微接触印刷进行。这些结果表明,烯丙基缩水甘油醚等离子体聚合物层是一种有吸引力的策略,可在广泛的基底材料上制备用于生物芯片和其他生物技术应用的反应性环氧官能化表面。