Garg R K, Kim S S, Hash D B, Gore J P, Fisher T S
School of Mechanical Engineering , Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA.
J Nanosci Nanotechnol. 2008 Jun;8(6):3068-76. doi: 10.1166/jnn.2008.082.
Many engineering applications require carbon nanotubes with specific characteristics such as wall structure, chirality and alignment. However, precise control of nanotube properties grown to application specifications remains a significant challenge. Plasma-enhanced chemical vapor deposition (PECVD) offers a variety of advantages in the synthesis of carbon nanotubes in that several important synthesis parameters can be controlled independently. This paper reports an experimental study of the effects of reacting gas composition (percentage methane in hydrogen) and catalyst film thickness on carbon nanotube (CNT) growth and a computational study of gas-phase composition for the inlet conditions of experimentally observed carbon nanotube growth using different chemical reaction mechanisms. The simulations seek to explain the observed effects of reacting gas composition and to identify the precursors for CNT formation. The experimental results indicate that gas-phase composition significantly affects the synthesized material, which is shown to be randomly aligned nanotube and nanofiber mats for relatively methane-rich inlet gas mixtures and non-tubular carbon for methane-lean incoming mixtures. The simulation results suggest that inlet methane-hydrogen mixture coverts to an acetylene-methane-hydrogen mixture with minor amounts of ethylene, hydrogen atom, and methyl radical. Acetylene appears to be the indicator species for solid carbon formation. The simulations also show that inlet methane-hydrogen mixture does not produce enough gas-phase precursors needed to form quality CNTs below 5% CH4 concentrations in the inlet stream.
许多工程应用需要具有特定特性(如壁结构、手性和排列)的碳纳米管。然而,将纳米管的性质精确控制到符合应用规格仍然是一项重大挑战。等离子体增强化学气相沉积(PECVD)在碳纳米管的合成中具有多种优势,因为几个重要的合成参数可以独立控制。本文报道了关于反应气体组成(氢气中甲烷的百分比)和催化剂膜厚度对碳纳米管(CNT)生长影响的实验研究,以及使用不同化学反应机制对实验观察到的碳纳米管生长入口条件下气相组成的计算研究。这些模拟旨在解释观察到的反应气体组成的影响,并确定碳纳米管形成的前驱体。实验结果表明,气相组成对合成材料有显著影响,对于相对富含甲烷的入口气体混合物,合成材料为随机排列的纳米管和纳米纤维垫,而对于贫甲烷的进入混合物,则为非管状碳。模拟结果表明,入口甲烷 - 氢气混合物转化为含有少量乙烯、氢原子和甲基自由基的乙炔 - 甲烷 - 氢气混合物。乙炔似乎是固体碳形成的指示物种。模拟还表明,入口甲烷 - 氢气混合物在入口流中CH4浓度低于5%时,不会产生足够的气相前驱体来形成高质量的碳纳米管。