Surmeli Dimitrij, Ratmann Oliver, Mewes Hans-Werner, Tetko Igor V
Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Bioinformatics and Systems Biology, Ingolstädter Landstrasse 1, Neuherberg, Germany.
Comput Biol Chem. 2008 Oct;32(5):375-7. doi: 10.1016/j.compbiolchem.2008.06.004. Epub 2008 Jul 3.
Pairwise comparison of sequence data is intensively used for automated functional protein annotation, while graphical models emerge as promising candidates for an integration of various heterogeneous features. We designed a model, termed hRMN that integrates different genomic features and implemented a variant of belief propagation for functional annotation transfer. hRMN allows the assignment of multiple functional categories while avoiding common problems in annotation transfer from heterogeneous datasets, such as an independency of the investigated datasets. We benchmarked this system with large-scale annotation transfer (based on the MIPS FunCat ontology) to proteins of the prokaryotes Bacillus subtilis, Helicobacter pylori, Listeria monocytogenes, and Listeria innocua. hRMN consistently outperformed two competitors in annotation of four bacterial genomes. The developed code is available for download at http://mips.gsf.de/proj/bfab/hRMN.html.
序列数据的成对比较被广泛用于自动化功能蛋白质注释,而图形模型则成为整合各种异构特征的有前途的候选方法。我们设计了一个名为hRMN的模型,该模型整合了不同的基因组特征,并实现了一种用于功能注释转移的信念传播变体。hRMN允许分配多个功能类别,同时避免从异构数据集中进行注释转移时的常见问题,例如所研究数据集的独立性。我们基于大规模注释转移(基于MIPS FunCat本体)对该系统进行了基准测试,以注释原核生物枯草芽孢杆菌、幽门螺杆菌、单核细胞增生李斯特菌和无害李斯特菌的蛋白质。在对四个细菌基因组的注释中,hRMN始终优于两个竞争对手。开发的代码可从http://mips.gsf.de/proj/bfab/hRMN.html下载。