Xu Changcheng, Fan Jilian, Cornish Adam J, Benning Christoph
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
Plant Cell. 2008 Aug;20(8):2190-204. doi: 10.1105/tpc.108.061176. Epub 2008 Aug 8.
The development of chloroplasts in Arabidopsis thaliana requires extensive lipid trafficking between the endoplasmic reticulum (ER) and the plastid. The biosynthetic enzymes for the final steps of chloroplast lipid assembly are associated with the plastid envelope membranes. For example, during biosynthesis of the galactoglycerolipids predominant in photosynthetic membranes, galactosyltransferases associated with these membranes transfer galactosyl residues from UDP-Gal to diacylglycerol. In Arabidopsis, diacylglycerol can be derived from the ER or the plastid. Here, we describe a mutant of Arabidopsis, trigalactosyldiacylglycerol4 (tgd4), in which ER-derived diacylglycerol is not available for galactoglycerolipid biosynthesis. This mutant accumulates diagnostic oligogalactoglycerolipids, hence its name, and triacylglycerol in its tissues. The TGD4 gene encodes a protein that appears to be associated with the ER membranes. Mutant ER microsomes show a decreased transfer of lipids to isolated plastids consistent with in vivo labeling data, indicating a disruption of ER-to-plastid lipid transfer. The complex lipid phenotype of the mutant is similar to that of the tgd1,2,3 mutants disrupted in components of a lipid transporter of the inner plastid envelope membrane. However, unlike the TGD1,2,3 complex, which is proposed to transfer phosphatidic acid through the inner envelope membrane, TGD4 appears to be part of the machinery mediating lipid transfer between the ER and the outer plastid envelope membrane. The extent of direct ER-to-plastid envelope contact sites is not altered in the tgd4 mutant. However, this does not preclude a possible function of TGD4 in those contact sites as a conduit for lipid transfer between the ER and the plastid.
拟南芥中叶绿体的发育需要在内质网(ER)和质体之间进行广泛的脂质运输。叶绿体脂质组装最后步骤的生物合成酶与质体包膜膜相关联。例如,在光合膜中占主导地位的半乳糖甘油酯的生物合成过程中,与这些膜相关联的半乳糖基转移酶将UDP - 半乳糖中的半乳糖基残基转移到二酰基甘油上。在拟南芥中,二酰基甘油可以源自内质网或质体。在这里,我们描述了拟南芥的一个突变体,三半乳糖基二酰基甘油4(tgd4),其中源自内质网的二酰基甘油无法用于半乳糖甘油酯的生物合成。该突变体在其组织中积累了具有诊断性的寡半乳糖甘油酯,因此得名,以及三酰基甘油。TGD4基因编码一种似乎与内质网相关膜有关的蛋白质。突变体的内质网微粒体显示脂质向分离的质体的转移减少,这与体内标记数据一致,表明内质网到质体的脂质转移受到破坏。该突变体复杂的脂质表型与在内质体包膜膜脂质转运蛋白成分中被破坏的tgd1、2、3突变体相似。然而,与被认为通过内膜包膜转移磷脂酸的TGD1、2、3复合体不同,TGD4似乎是介导内质网和质体外膜包膜之间脂质转移机制的一部分。在tgd4突变体中,内质网与质体包膜直接接触位点的范围没有改变。然而,这并不排除TGD4在这些接触位点作为内质网和质体之间脂质转移通道的可能功能。