Suppr超能文献

信号网络动力学模型的自动分解,使模块间的追溯性最小化。

Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.

作者信息

Saez-Rodriguez Julio, Gayer Stefan, Ginkel Martin, Gilles Ernst Dieter

机构信息

Max-Planck-Institute for Dynamics of Complex Technical Systems, Sandtorstr 1, 39106 Magdeburg, Germany.

出版信息

Bioinformatics. 2008 Aug 15;24(16):i213-9. doi: 10.1093/bioinformatics/btn289.

Abstract

MOTIVATION

The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.ned as chemical systems. Such a decomposition would be very useful as most quantitative models are de.ned using the latter, more detailed formalism.

RESULTS

Here, we introduce a novel method to decompose biochemical networks into modules so that the bidirectional (retroactive) couplings among the modules are minimized. Our approach adapts a method to detect community structures, and applies it to the so-called retroactivity matrix that characterizes the couplings of the network. Only the structure of the network, e.g. in SBML format, is required. Furthermore, the modularized models can be loaded into ProMoT, a modeling tool which supports modular modeling. This allows visualization of the models, exploiting their modularity and easy generation of models of one or several modules for further analysis. The method is applied to several relevant cases, including an entangled model of the EGF-induced MAPK cascade and a comprehensive model of EGF signaling, demonstrating its ability to uncover meaningful modules. Our approach can thus help to analyze large networks, especially when little a priori knowledge on the structure of the network is available.

AVAILABILITY

The decomposition algorithms implemented in MATLAB (Mathworks, Inc.) are freely available upon request. ProMoT is freely available at http://www.mpi-magdeburg.mpg.de/projects/promot.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在过去几年中,人们广泛研究了一般生化网络的模块化,特别是信号网络的模块化。有人提出模块化是分析信号网络的一个有用特性:通过将网络分解为子系统,可以得到更易于管理且更易于分析的单元。虽然有许多强大的算法可用于识别蛋白质相互作用网络中的模块,但对于定义为化学系统的信号网络却较少关注。这种分解将非常有用,因为大多数定量模型是使用后一种更详细的形式主义定义的。

结果

在这里,我们介绍了一种将生化网络分解为模块的新方法,以使模块之间的双向(追溯)耦合最小化。我们的方法采用了一种检测社区结构的方法,并将其应用于表征网络耦合的所谓追溯矩阵。只需要网络的结构,例如SBML格式。此外,模块化模型可以加载到ProMoT中,ProMoT是一个支持模块化建模的建模工具。这允许对模型进行可视化,利用其模块化特性,并轻松生成一个或多个模块的模型以进行进一步分析。该方法应用于几个相关案例,包括EGF诱导的MAPK级联的纠缠模型和EGF信号传导的综合模型,证明了其揭示有意义模块的能力。因此,我们的方法有助于分析大型网络,特别是在对网络结构几乎没有先验知识的情况下。

可用性

可根据要求免费提供用MATLAB(Mathworks公司)实现的分解算法。ProMoT可从http://www.mpi-magdeburg.mpg.de/projects/promot免费获取。

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验