MacFarlane P M, Wilkerson J E R, Lovett-Barr M R, Mitchell G S
Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):263-71. doi: 10.1016/j.resp.2008.07.008.
The neural network controlling breathing exhibits plasticity in response to environmental or physiological challenges. For example, while hypoxia initiates rapid and robust increases in respiratory motor output to defend against hypoxemia, it also triggers persistent changes, or plasticity, in chemosensory neurons and integrative pathways that transmit brainstem respiratory activity to respiratory motor neurons. Frequently studied models of hypoxia-induced respiratory plasticity include: (1) carotid chemosensory plasticity and metaplasticity induced by chronic intermittent hypoxia (CIH), and (2) acute intermittent hypoxia (AIH) induced phrenic long-term facilitation (pLTF) in naïve and CIH preconditioned rats. These forms of plasticity share some mechanistic elements, although they differ in anatomical location and the requirement for CIH preconditioning. Both forms of plasticity require serotonin receptor activation and formation of reactive oxygen species (ROS). While the cellular sources and targets of ROS are not well known, recent evidence suggests that ROS modify the balance of protein phosphatase and kinase activities, shifting the balance towards net phosphorylation and favoring cellular reactions that induce and/or maintain plasticity. Here, we review possible sources of ROS, and the impact of ROS on phosphorylation events relevant to respiratory plasticity.
控制呼吸的神经网络在应对环境或生理挑战时表现出可塑性。例如,虽然低氧会引发呼吸运动输出迅速而强烈地增加以抵御低氧血症,但它也会在化学感应神经元和将脑干呼吸活动传递给呼吸运动神经元的整合通路中引发持续变化或可塑性。经常研究的低氧诱导呼吸可塑性模型包括:(1)慢性间歇性低氧(CIH)诱导的颈动脉化学感应可塑性和元可塑性,以及(2)急性间歇性低氧(AIH)在未处理和CIH预处理大鼠中诱导的膈神经长期易化(pLTF)。这些可塑性形式有一些共同的机制要素,尽管它们在解剖位置和对CIH预处理的需求方面有所不同。两种可塑性形式都需要血清素受体激活和活性氧(ROS)的形成。虽然ROS的细胞来源和靶点尚不清楚,但最近的证据表明,ROS会改变蛋白磷酸酶和激酶活性的平衡,使平衡向净磷酸化方向转变,并有利于诱导和/或维持可塑性的细胞反应。在这里,我们综述了ROS的可能来源,以及ROS对与呼吸可塑性相关的磷酸化事件的影响。