Travers Debbie, Wu Shiying, Scholer Matthew, Westlake Matt, Waller Anna, McCalla Anne-Lyne
University of North Carolina, Chapel Hill, NC, USA.
AMIA Annu Symp Proc. 2007 Oct 11;2007:736-40.
Emergency Department (ED) chief complaint (CC) data are key components of syndromic surveillance systems. However, it is difficult to use CC data because they are not standardized and contain varying semantic and lexical forms for the same concept. The purpose of this project was to revise a previously-developed text processor for pre-processing CC data specifically for syndromic surveillance and then evaluate it for acute respiratory illness surveillance to support decisions by public health epidemiologists. We evaluated the text processor accuracy and used the results to customize it for respiratory surveillance. We sampled 3,699 ED records from a population-based public health surveillance system. We found equal sensitivity, specificity, and positive and negative predictive value of syndrome queries of data processed through the text processor compared to a standard keyword method on raw, unprocessed data.
急诊科(ED)主诉(CC)数据是症状监测系统的关键组成部分。然而,CC数据难以使用,因为它们未标准化,且对于同一概念包含不同的语义和词汇形式。本项目的目的是修订一个先前开发的文本处理器,用于专门针对症状监测对CC数据进行预处理,然后对其进行急性呼吸道疾病监测评估,以支持公共卫生流行病学家做出决策。我们评估了文本处理器的准确性,并利用结果对其进行定制以用于呼吸道监测。我们从一个基于人群的公共卫生监测系统中抽取了3699份ED记录。我们发现,与对原始未处理数据使用标准关键词方法相比,通过文本处理器处理的数据进行综合征查询时,其敏感性、特异性、阳性预测值和阴性预测值相同。