Suppr超能文献

Secondary structure transitions and aggregation induced in dynorphin neuropeptides by the detergent sodium dodecyl sulfate.

作者信息

Hugonin Loïc, Barth Andreas, Gräslund Astrid, Perálvarez-Marín Alex

机构信息

Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691, Stockholm, Sweden.

出版信息

Biochim Biophys Acta. 2008 Nov;1778(11):2580-7. doi: 10.1016/j.bbamem.2008.07.011. Epub 2008 Jul 23.

Abstract

Dynorphins, endogeneous opioid neuropeptides, function as ligands to the opioid kappa receptors and also induce non-opioid effects in neurons, probably related to direct membrane interactions. We have characterized the structure transitions of dynorphins (big dynorphin, dynorphin A and dynorphin B) induced by the detergent sodium dodecyl sulfate (SDS). In SDS titrations monitored by circular dichroism, we observed secondary structure conversions of the peptides from random coil to alpha-helix with a highly aggregated intermediate. As determined by Fourier transform infrared spectroscopy, this intermediate exhibited beta-sheet structure for dynorphin B and big dynorphin. In contrast, aggregated dynorphin A was alpha-helical without considerable beta-sheet content. Hydrophobicity analysis indicates that the YGGFLRR motif present in all dynorphins is prone to be inserted in the membrane. Comparing big dynorphin with dynorphin A and dynorphin B, we suggest that the potent neurotoxicity of big dynorphin could be related to the combination of amino acid sequences and secondary structure propensities of dynorphin A and dynorphin B, which may generate a synergistic effect for big dynorphin membrane perturbing properties. The induced aggregated alpha-helix of dynorphin A is also correlated with membrane perturbations, whereas the beta-sheet of dynorphin B does not correlate with membrane perturbations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验