Suppr超能文献

Oscore:一种用于降低串联质谱分析中肽段鉴定假阴性率的综合评分。

Oscore: a combined score to reduce false negative rates for peptide identification in tandem mass spectrometry analysis.

作者信息

Shao Chen, Sun Wei, Li Fuxin, Yang Ruifeng, Zhang Ling, Gao Youhe

机构信息

Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.

出版信息

J Mass Spectrom. 2009 Jan;44(1):25-31. doi: 10.1002/jms.1466.

Abstract

Tandem mass spectrometry (MS/MS) has been widely used in proteomics studies. Multiple algorithms have been developed for assessing matches between MS/MS spectra and peptide sequences in databases. However, it is still a challenge to reduce false negative rates without compromising the high confidence of peptide identification. In this study, we developed the score, Oscore, by logistic regression using SEQUEST and AMASS variables to identify fully tryptic peptides. Since these variables showed complicated association with each other, combining them together rather than applying them to a threshold model improved the classification of correct and incorrect peptide identifications. Oscore achieved both a lower false negative rate and a lower false positive rate than PeptideProphet on datasets from 18 known protein mixtures and several proteome-scale samples of different complexity, database size and separation methods. By a three-way comparison among Oscore, PeptideProphet and another logistic regression model which made use of PeptideProphet's variables, the main contributor for the improvement made by Oscore is discussed.

摘要

串联质谱(MS/MS)已广泛应用于蛋白质组学研究。已经开发了多种算法来评估MS/MS谱与数据库中肽序列之间的匹配。然而,在不影响肽鉴定高置信度的情况下降低假阴性率仍然是一个挑战。在本研究中,我们通过逻辑回归使用SEQUEST和AMASS变量开发了分数Oscore,以鉴定完全酶解的肽段。由于这些变量之间显示出复杂的关联,将它们组合在一起而不是应用于阈值模型改善了正确和错误肽鉴定的分类。在来自18种已知蛋白质混合物以及几个不同复杂度、数据库大小和分离方法的蛋白质组规模样本的数据集上,Oscore的假阴性率和假阳性率均低于PeptideProphet。通过对Oscore、PeptideProphet和另一个使用PeptideProphet变量的逻辑回归模型进行三方比较,讨论了Oscore改进的主要贡献因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验