Kotliarova Svetlana, Pastorino Sandra, Kovell Lara C, Kotliarov Yuri, Song Hua, Zhang Wei, Bailey Rolanda, Maric Dragan, Zenklusen Jean Claude, Lee Jeongwu, Fine Howard A
Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
Cancer Res. 2008 Aug 15;68(16):6643-51. doi: 10.1158/0008-5472.CAN-08-0850.
Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, is involved in diverse cellular processes ranging from nutrient and energy homeostasis to proliferation and apoptosis. Its role in glioblastoma multiforme has yet to be elucidated. We identified GSK3 as a regulator of glioblastoma multiforme cell survival using microarray analysis and small-molecule and genetic inhibitors of GSK3 activity. Various molecular and genetic approaches were then used to dissect out the molecular mechanisms responsible for GSK3 inhibition-induced cytotoxicity. We show that multiple small molecular inhibitors of GSK3 activity and genetic down-regulation of GSK3alpha/beta significantly inhibit glioma cell survival and clonogenicity. The potency of the cytotoxic effects is directly correlated with decreased enzyme activity-activating phosphorylation of GSK3alpha/beta Y276/Y216 and with increased enzyme activity inhibitory phosphorylation of GSK3alpha S21. Inhibition of GSK3 activity results in c-MYC activation, leading to the induction of Bax, Bim, DR4/DR5, and tumor necrosis factor-related apoptosis-inducing ligand expression and subsequent cytotoxicity. Additionally, down-regulation of GSK3 activity results in alteration of intracellular glucose metabolism resulting in dissociation of hexokinase II from the outer mitochondrial membrane with subsequent mitochondrial destabilization. Finally, inhibition of GSK3 activity causes a dramatic decrease in intracellular nuclear factor-kappaB activity. Inhibition of GSK3 activity results in c-MYC-dependent glioma cell death through multiple mechanisms, all of which converge on the apoptotic pathways. GSK3 may therefore be an important therapeutic target for gliomas. Future studies will further define the optimal combinations of GSK3 inhibitors and cytotoxic agents for use in gliomas and other cancers.
糖原合酶激酶3(GSK3)是一种丝氨酸/苏氨酸激酶,参与从营养和能量稳态到细胞增殖和凋亡等多种细胞过程。其在多形性胶质母细胞瘤中的作用尚未阐明。我们通过微阵列分析以及GSK3活性的小分子和基因抑制剂,将GSK3鉴定为多形性胶质母细胞瘤细胞存活的调节因子。然后采用各种分子和遗传学方法剖析GSK3抑制诱导细胞毒性的分子机制。我们发现,多种GSK3活性小分子抑制剂以及GSK3α/β的基因下调可显著抑制胶质瘤细胞的存活和克隆形成能力。细胞毒性作用的效力与GSK3α/β Y276/Y216酶活性激活磷酸化的降低以及GSK3α S21酶活性抑制磷酸化的增加直接相关。抑制GSK3活性导致c-MYC激活,进而诱导Bax、Bim、DR4/DR5和肿瘤坏死因子相关凋亡诱导配体的表达,随后产生细胞毒性。此外,GSK3活性的下调导致细胞内葡萄糖代谢改变,导致己糖激酶II从线粒体外膜解离,随后线粒体不稳定。最后,抑制GSK3活性导致细胞内核因子-κB活性显著降低。抑制GSK3活性通过多种机制导致c-MYC依赖性胶质瘤细胞死亡,所有这些机制都汇聚在凋亡途径上。因此,GSK3可能是胶质瘤的一个重要治疗靶点。未来的研究将进一步确定用于胶质瘤和其他癌症的GSK3抑制剂与细胞毒性药物的最佳组合。