Suppr超能文献

WNK3和WNK4的氨基末端结构域决定了它们对肾脏钠氯共转运体的作用。

WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na+-Cl- cotransporter.

作者信息

San-Cristobal Pedro, Ponce-Coria José, Vázquez Norma, Bobadilla Norma A, Gamba Gerardo

机构信息

Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Vasco de Quiroga no. 15, Tlalpan 14000, Mexico City, Mexico.

出版信息

Am J Physiol Renal Physiol. 2008 Oct;295(4):F1199-206. doi: 10.1152/ajprenal.90396.2008. Epub 2008 Aug 13.

Abstract

Loss of physiological regulation of the renal thiazide-sensitive Na+-Cl- cotransporter (NCC) by mutant WNK1 or WNK4 results in pseudohypoaldosteronism type II (PHAII) characterized by arterial hypertension and hyperkalemia. WNK4 normally inhibits NCC, but this effect is lost by eliminating WNK4 catalytic activity or through PHAII-type mutations. In contrast, another member of the WNK family, WNK3, activates NCC. The positive effect of WNK3 on NCC also requires its catalytic activity. Because the opposite effects of WNK3 and WNK4 on NCC were observed in the same expression system, sequences within the WNKs should endow these kinases with their activating or inhibiting properties. To gain insight into the structure-function relationships between the WNKs and NCC, we used a chimera approach between WNK3 and WNK4 to elucidate the domain of the WNKs responsible for the effects on NCC. Chimeras were constructed by swapping the amino or carboxyl terminus domains, which flank the central kinase domain, between WNK3 and WNK4. Our results show that the effect of chimeras toward NCC follows the amino-terminal domain. Thus the amino terminus of the WNKs contains the sequences that are required for their activating or inhibiting properties on NCC.

摘要

突变的WNK1或WNK4导致肾脏噻嗪类敏感型Na+-Cl-共转运体(NCC)生理调节功能丧失,从而引发II型假性醛固酮减少症(PHAII),其特征为动脉高血压和高钾血症。WNK4通常抑制NCC,但通过消除WNK4催化活性或PHAII型突变会丧失这种作用。相比之下,WNK家族的另一个成员WNK3激活NCC。WNK3对NCC的正向作用也需要其催化活性。由于在同一表达系统中观察到WNK3和WNK4对NCC具有相反作用,WNK内的序列应赋予这些激酶激活或抑制特性。为深入了解WNK与NCC之间的结构-功能关系,我们采用WNK3和WNK4之间的嵌合体方法来阐明WNK中对NCC产生作用的结构域。通过在WNK3和WNK4之间交换位于中央激酶结构域两侧的氨基或羧基末端结构域构建嵌合体。我们的结果表明,嵌合体对NCC的作用遵循氨基末端结构域。因此,WNK的氨基末端包含其对NCC产生激活或抑制特性所需的序列。

相似文献

1
WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na+-Cl- cotransporter.
Am J Physiol Renal Physiol. 2008 Oct;295(4):F1199-206. doi: 10.1152/ajprenal.90396.2008. Epub 2008 Aug 13.
2
WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
J Clin Invest. 2003 Apr;111(7):1039-45. doi: 10.1172/JCI17443.
3
The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex.
J Clin Invest. 2007 Nov;117(11):3403-11. doi: 10.1172/JCI32033.
4
WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
Hypertension. 2014 Nov;64(5):1047-53. doi: 10.1161/HYPERTENSIONAHA.114.04036. Epub 2014 Aug 11.
5
WNK3 and WNK4 exhibit opposite sensitivity with respect to cell volume and intracellular chloride concentration.
Am J Physiol Cell Physiol. 2020 Aug 1;319(2):C371-C380. doi: 10.1152/ajpcell.00488.2019. Epub 2020 Jun 24.
6
Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved.
Am J Physiol Renal Physiol. 2006 Dec;291(6):F1369-76. doi: 10.1152/ajprenal.00468.2005. Epub 2006 Jun 20.
7
WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
J Physiol. 2006 Mar 1;571(Pt 2):275-86. doi: 10.1113/jphysiol.2005.102202. Epub 2005 Dec 15.
9
Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7929-34. doi: 10.1073/pnas.1200947109. Epub 2012 May 1.
10

引用本文的文献

3
C-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activity.
J Biol Chem. 2018 Aug 3;293(31):12209-12221. doi: 10.1074/jbc.RA118.003037. Epub 2018 Jun 19.
4
Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F734-F745. doi: 10.1152/ajprenal.00145.2018. Epub 2018 May 30.
5
Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E879-E886. doi: 10.1073/pnas.1620315114. Epub 2017 Jan 17.
6
Revisiting the NaCl cotransporter regulation by with-no-lysine kinases.
Am J Physiol Cell Physiol. 2015 May 15;308(10):C779-91. doi: 10.1152/ajpcell.00065.2015. Epub 2015 Mar 18.
7
Identification of the WNK-SPAK/OSR1 signaling pathway in rodent and human lenses.
Invest Ophthalmol Vis Sci. 2014 Dec 16;56(1):310-21. doi: 10.1167/iovs.14-15911.
8
Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3.
J Clin Invest. 2014 Nov;124(11):4723-36. doi: 10.1172/JCI76126. Epub 2014 Sep 24.
9
WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
Hypertension. 2014 Nov;64(5):1047-53. doi: 10.1161/HYPERTENSIONAHA.114.04036. Epub 2014 Aug 11.
10
The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation.
Pflugers Arch. 2014 Jan;466(1):107-18. doi: 10.1007/s00424-013-1407-9. Epub 2013 Dec 6.

本文引用的文献

1
Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8458-63. doi: 10.1073/pnas.0802966105. Epub 2008 Jun 11.
2
Domains of WNK1 kinase in the regulation of ROMK1.
Am J Physiol Renal Physiol. 2008 Aug;295(2):F438-45. doi: 10.1152/ajprenal.90287.2008. Epub 2008 Jun 11.
3
WNK kinases and renal sodium transport in health and disease: an integrated view.
Hypertension. 2008 Mar;51(3):588-96. doi: 10.1161/HYPERTENSIONAHA.107.103788. Epub 2008 Jan 22.
4
The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex.
J Clin Invest. 2007 Nov;117(11):3403-11. doi: 10.1172/JCI32033.
5
WNK4-mediated regulation of renal ion transport proteins.
Am J Physiol Renal Physiol. 2007 Oct;293(4):F961-73. doi: 10.1152/ajprenal.00192.2007. Epub 2007 Jul 18.
8
WNK4 kinase is a negative regulator of K+-Cl- cotransporters.
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1197-207. doi: 10.1152/ajprenal.00335.2006. Epub 2006 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验