Suppr超能文献

[用于癌症的荧光体内成像探针的研发]

[Development of fluorescent in vivo imaging probes for cancers].

作者信息

Tanaka Shotaro, Kizaka-Kondoh Shinae

机构信息

Dept. of Radiation Oncology and Image-applied Therapy, Kyoto University, Kyoto, Japan.

出版信息

Gan To Kagaku Ryoho. 2008 Aug;35(8):1272-6.

Abstract

Optical techniques are emerging as powerful new modalities for molecular imaging in vivo. Although they are less sensitive and poor in resolution, they have an advantage over other modalities such as PET, CT, and MR in terms of safety, easiness, economy, speed and especially multiplicity. Thus, they are expected to be modalities for the next generation to functionally image diseases. Because of low tissue penetrance, high dispersion and influence of autofluorescence, their application to in vivo imaging had not been successful until recently. Recent technological progression in an ultrasensitive charge-coupled device(CCD)camera and improvement of software have encouraged progress in optical in vivo imaging techniques. Furthermore, the recent advances in fluorescent imaging have been accelerated by near-infrared(NIR)dyes, which have higher tissue-penetrance in addition to lower autofluorescence from nontarget tissue. Studies with optical technologies will show further advances in molecular imaging and clinical medicine by themselves and by fusing with other modalities. This review gives an overview of recent progress in fluorescent in vivo imaging techniques and introduces our study for developing NIR fluorescent probes specific to tumor hypoxia, a hallmark of malignant tumors.

摘要

光学技术正在成为一种强大的新型体内分子成像方式。尽管它们的灵敏度较低且分辨率较差,但在安全性、简易性、经济性、速度尤其是多样性方面,它们比正电子发射断层扫描(PET)、计算机断层扫描(CT)和磁共振成像(MR)等其他成像方式具有优势。因此,它们有望成为下一代用于疾病功能成像的方式。由于组织穿透性低、高散射以及自体荧光的影响,直到最近它们在体内成像中的应用都未取得成功。超灵敏电荷耦合器件(CCD)相机的最新技术进展以及软件的改进推动了光学体内成像技术的进步。此外,近红外(NIR)染料加速了荧光成像的最新进展,这种染料除了来自非靶组织的自体荧光较低外,还具有更高的组织穿透性。光学技术研究自身以及与其他成像方式融合,都将在分子成像和临床医学方面展现出进一步的进展。本综述概述了荧光体内成像技术的最新进展,并介绍了我们针对开发特异性针对肿瘤缺氧(恶性肿瘤的一个标志)的近红外荧光探针的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验