Suppr超能文献

野生型和突变型铜锌超氧化物歧化酶在哺乳动物线粒体中定位的不同调控

Different regulation of wild-type and mutant Cu,Zn superoxide dismutase localization in mammalian mitochondria.

作者信息

Kawamata Hibiki, Manfredi Giovanni

机构信息

Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA.

出版信息

Hum Mol Genet. 2008 Nov 1;17(21):3303-17. doi: 10.1093/hmg/ddn226. Epub 2008 Aug 13.

Abstract

The antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) is predominantly localized in the cytosol, but it is also found in mitochondria. Studies in yeast suggest that apoSOD1 is imported into mitochondria and trapped inside by folding and maturation, which is facilitated by its copper chaperone for SOD1 (CCS). Here, we show that in mammalian cells, SOD1 mitochondrial localization is dictated by its folding state, which is modulated by several interconnected factors. First, the intracellular distribution of CCS determines SOD1 partitioning in cytosol and mitochondria: CCS localization in the cytosol prevents SOD1 mitochondrial import, whereas CCS in mitochondria increases it. Second, the Mia40/Erv1 pathway for import of small intermembrane space proteins participates in CCS mitochondrial import in a respiratory chain-dependent manner. Third, CCS mitochondrial import is regulated by oxygen concentration: high (20%) oxygen prevents import, whereas physiological (6%) oxygen promotes it. Therefore, SOD1 localization responds to changes in environmental conditions following redistribution of CCS, which operates as an oxygen sensor. Fourth, all of the cysteine residues in human SOD1 are critical for its retention in mitochondria due to their involvement in intramolecular disulfide bonds and in the interaction with CCS. Mutations in SOD1 are associated with autosomal dominant familial amyotrophic lateral sclerosis. Like the wild-type protein, mutant SOD1 localizes to mitochondria, where it induces bioenergetic defects. We find that the physiological regulation of mitochondrial localization is either inefficient or absent in SOD1 pathogenic mutants. We propose misfolding and aggregation of these mutants that trap them inside mitochondria.

摘要

抗氧化酶铜锌超氧化物歧化酶(SOD1)主要定位于细胞质中,但也存在于线粒体中。酵母研究表明,脱辅基SOD1被导入线粒体并通过折叠和成熟被困在其中,这一过程由其铜伴侣蛋白SOD1(CCS)促进。在此,我们表明在哺乳动物细胞中,SOD1的线粒体定位由其折叠状态决定,而折叠状态受到几个相互关联因素的调节。首先,CCS的细胞内分布决定了SOD1在细胞质和线粒体中的分配:CCS定位于细胞质中可防止SOD1导入线粒体,而线粒体中的CCS则会增加其导入。其次,用于导入小的膜间隙蛋白的Mia40/Erv1途径以呼吸链依赖的方式参与CCS的线粒体导入。第三,CCS的线粒体导入受氧浓度调节:高(20%)氧可阻止导入,而生理(6%)氧则促进导入。因此,SOD1的定位会随着作为氧传感器的CCS重新分布而对环境条件的变化做出反应。第四,人SOD1中的所有半胱氨酸残基对于其保留在线粒体中至关重要,因为它们参与分子内二硫键的形成以及与CCS的相互作用。SOD1突变与常染色体显性家族性肌萎缩侧索硬化症相关。与野生型蛋白一样,突变型SOD1定位于线粒体,在那里它会诱导生物能量缺陷。我们发现,线粒体定位的生理调节在SOD1致病突变体中要么效率低下,要么不存在。我们提出这些突变体的错误折叠和聚集将它们困在线粒体内。

相似文献

1
Different regulation of wild-type and mutant Cu,Zn superoxide dismutase localization in mammalian mitochondria.
Hum Mol Genet. 2008 Nov 1;17(21):3303-17. doi: 10.1093/hmg/ddn226. Epub 2008 Aug 13.
2
Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.
Antioxid Redox Signal. 2010 Nov 1;13(9):1375-84. doi: 10.1089/ars.2010.3212.
3
Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1.
FEBS J. 2013 Oct;280(20):4943-59. doi: 10.1111/febs.12409. Epub 2013 Jul 22.
4
Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol.
Mol Biol Cell. 2011 Oct;22(20):3749-57. doi: 10.1091/mbc.E11-04-0293. Epub 2011 Aug 24.
5
The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1.
J Mol Biol. 2009 Jan 16;385(2):331-8. doi: 10.1016/j.jmb.2008.10.088. Epub 2008 Nov 7.
8
In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.
Acc Chem Res. 2018 Jun 19;51(6):1550-1557. doi: 10.1021/acs.accounts.8b00147. Epub 2018 Jun 5.
10
Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.
Hum Mol Genet. 2008 Jun 15;17(12):1728-37. doi: 10.1093/hmg/ddn063. Epub 2008 Mar 12.

引用本文的文献

1
Arginyltransferase1 drives a mitochondria-dependent program to induce cell death.
Cell Death Dis. 2025 Aug 16;16(1):622. doi: 10.1038/s41419-025-07917-1.
2
Identification and validation of oxidative stress-related genes for the diagnosis of sepsis-induced acute lung injury.
PLoS One. 2025 Jul 22;20(7):e0327945. doi: 10.1371/journal.pone.0327945. eCollection 2025.
4
Role of copper in central nervous system physiology and pathology.
Neural Regen Res. 2025 Apr 1;20(4):1058-1068. doi: 10.4103/NRR.NRR-D-24-00110. Epub 2024 May 17.
5
Oxidative protein folding in the intermembrane space of human mitochondria.
FEBS Open Bio. 2024 Oct;14(10):1610-1626. doi: 10.1002/2211-5463.13839. Epub 2024 Jun 12.
6
Understanding coenzyme Q.
Physiol Rev. 2024 Oct 1;104(4):1533-1610. doi: 10.1152/physrev.00040.2023. Epub 2024 May 9.
8
Copper Chaperone for Superoxide Dismutase Subtypes as a Prognostic Marker in Luminal B Breast Cancer.
Clin Med Insights Oncol. 2024 Jan 4;18:11795549231219239. doi: 10.1177/11795549231219239. eCollection 2024.
9
Repaglinide Induces ATF6 Processing and Neuroprotection in Transgenic SOD1G93A Mice.
Int J Mol Sci. 2023 Oct 30;24(21):15783. doi: 10.3390/ijms242115783.

本文引用的文献

1
Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.
J Biol Chem. 2008 May 2;283(18):12267-75. doi: 10.1074/jbc.M708523200. Epub 2008 Mar 11.
2
A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis.
J Biol Chem. 2008 May 16;283(20):13528-37. doi: 10.1074/jbc.M800564200. Epub 2008 Mar 3.
3
Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4022-7. doi: 10.1073/pnas.0712209105. Epub 2008 Feb 22.
4
Oxidative folding competes with mitochondrial import of the small Tim proteins.
Biochem J. 2008 Apr 1;411(1):115-22. doi: 10.1042/BJ20071476.
6
The disulfide relay system of mitochondria is connected to the respiratory chain.
J Cell Biol. 2007 Nov 5;179(3):389-95. doi: 10.1083/jcb.200707123. Epub 2007 Oct 29.
7
Redox modifier genes in amyotrophic lateral sclerosis in mice.
J Clin Invest. 2007 Oct;117(10):2913-9. doi: 10.1172/JCI31265.
8
Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content.
Hum Mol Genet. 2007 Nov 15;16(22):2720-2728. doi: 10.1093/hmg/ddm226. Epub 2007 Aug 28.
9
Disulfide bond mediates aggregation, toxicity, and ubiquitylation of familial amyotrophic lateral sclerosis-linked mutant SOD1.
J Biol Chem. 2007 Sep 21;282(38):28087-95. doi: 10.1074/jbc.M704465200. Epub 2007 Jul 31.
10
Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: a possible general mechanism for familial ALS.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11263-7. doi: 10.1073/pnas.0704307104. Epub 2007 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验