Kawamata Hibiki, Manfredi Giovanni
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA.
Hum Mol Genet. 2008 Nov 1;17(21):3303-17. doi: 10.1093/hmg/ddn226. Epub 2008 Aug 13.
The antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) is predominantly localized in the cytosol, but it is also found in mitochondria. Studies in yeast suggest that apoSOD1 is imported into mitochondria and trapped inside by folding and maturation, which is facilitated by its copper chaperone for SOD1 (CCS). Here, we show that in mammalian cells, SOD1 mitochondrial localization is dictated by its folding state, which is modulated by several interconnected factors. First, the intracellular distribution of CCS determines SOD1 partitioning in cytosol and mitochondria: CCS localization in the cytosol prevents SOD1 mitochondrial import, whereas CCS in mitochondria increases it. Second, the Mia40/Erv1 pathway for import of small intermembrane space proteins participates in CCS mitochondrial import in a respiratory chain-dependent manner. Third, CCS mitochondrial import is regulated by oxygen concentration: high (20%) oxygen prevents import, whereas physiological (6%) oxygen promotes it. Therefore, SOD1 localization responds to changes in environmental conditions following redistribution of CCS, which operates as an oxygen sensor. Fourth, all of the cysteine residues in human SOD1 are critical for its retention in mitochondria due to their involvement in intramolecular disulfide bonds and in the interaction with CCS. Mutations in SOD1 are associated with autosomal dominant familial amyotrophic lateral sclerosis. Like the wild-type protein, mutant SOD1 localizes to mitochondria, where it induces bioenergetic defects. We find that the physiological regulation of mitochondrial localization is either inefficient or absent in SOD1 pathogenic mutants. We propose misfolding and aggregation of these mutants that trap them inside mitochondria.
抗氧化酶铜锌超氧化物歧化酶(SOD1)主要定位于细胞质中,但也存在于线粒体中。酵母研究表明,脱辅基SOD1被导入线粒体并通过折叠和成熟被困在其中,这一过程由其铜伴侣蛋白SOD1(CCS)促进。在此,我们表明在哺乳动物细胞中,SOD1的线粒体定位由其折叠状态决定,而折叠状态受到几个相互关联因素的调节。首先,CCS的细胞内分布决定了SOD1在细胞质和线粒体中的分配:CCS定位于细胞质中可防止SOD1导入线粒体,而线粒体中的CCS则会增加其导入。其次,用于导入小的膜间隙蛋白的Mia40/Erv1途径以呼吸链依赖的方式参与CCS的线粒体导入。第三,CCS的线粒体导入受氧浓度调节:高(20%)氧可阻止导入,而生理(6%)氧则促进导入。因此,SOD1的定位会随着作为氧传感器的CCS重新分布而对环境条件的变化做出反应。第四,人SOD1中的所有半胱氨酸残基对于其保留在线粒体中至关重要,因为它们参与分子内二硫键的形成以及与CCS的相互作用。SOD1突变与常染色体显性家族性肌萎缩侧索硬化症相关。与野生型蛋白一样,突变型SOD1定位于线粒体,在那里它会诱导生物能量缺陷。我们发现,线粒体定位的生理调节在SOD1致病突变体中要么效率低下,要么不存在。我们提出这些突变体的错误折叠和聚集将它们困在线粒体内。