Roy Amit, Ganguly Agneyo, BoseDasgupta Somdeb, Das Benu Brata, Pal Churala, Jaisankar Parasuraman, Majumder Hemanta K
Molecular Parasitology Laboratory, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Rd., Kolkata-700032, India.
Mol Pharmacol. 2008 Nov;74(5):1292-307. doi: 10.1124/mol.108.050161. Epub 2008 Aug 14.
Mitochondria are the principal site for the generation of cellular ATP by oxidative phosphorylation. F0F1-ATP synthase, a complex V of the electron transport chain, is an important constituent of mitochondria-dependent signaling pathways involved in apoptosis. In the present study, we have shown for the first time that 3,3'-diindolylmethane (DIM), a DNA topoisomerase I poison, inhibits mitochondrial F0F1-ATP synthase of Leishmania donovani and induces programmed cell death (PCD), which is a novel insight into the mechanism in protozoan parasites. DIM-induced inhibition of F0F1-ATP synthase activity causes depletion of mitochondrial ATP levels and significant stimulation of mitochondrial reactive oxygen species (ROS) production, followed by depolarization of mitochondrial membrane potential (DeltaPsi(m)). Because DeltaPsi(m) is the driving force for mitochondrial ATP synthesis, loss of DeltaPsi(m) results in depletion of cellular ATP level. The loss of DeltaPsi(m) causes the cellular ROS generation and in turn leads to the oxidative DNA lesions followed by DNA fragmentation. In contrast, loss of DeltaPsi(m) leads to release of cytochrome c into the cytosol and subsequently activates the caspase-like proteases, which lead to oligonucleosomal DNA cleavage. We have also shown that mitochondrial DNA-depleted cells are insensitive to DIM to induce PCD. Therefore, mitochondria are necessary for cytotoxicity of DIM in kinetoplastid parasites. Taken together, our study indicates for the first time that DIM-induced mitochondrial dysfunction by inhibition of F0F1-ATP synthase activity leads to PCD in Leishmania spp. parasites, which could be exploited to develop newer potential therapeutic targets.
线粒体是通过氧化磷酸化产生细胞ATP的主要场所。F0F1-ATP合酶是电子传递链的复合物V,是参与细胞凋亡的线粒体依赖性信号通路的重要组成部分。在本研究中,我们首次表明,DNA拓扑异构酶I抑制剂3,3'-二吲哚甲烷(DIM)可抑制杜氏利什曼原虫的线粒体F0F1-ATP合酶并诱导程序性细胞死亡(PCD),这是对原生动物寄生虫机制的新见解。DIM诱导的F0F1-ATP合酶活性抑制导致线粒体ATP水平耗尽,并显著刺激线粒体活性氧(ROS)产生,随后线粒体膜电位(ΔΨm)去极化。由于ΔΨm是线粒体ATP合成的驱动力,ΔΨm的丧失导致细胞ATP水平耗尽。ΔΨm的丧失导致细胞ROS产生,进而导致氧化性DNA损伤,随后是DNA片段化。相反,ΔΨm的丧失导致细胞色素c释放到细胞质中,随后激活半胱天冬酶样蛋白酶,从而导致寡核小体DNA裂解。我们还表明,线粒体DNA缺失的细胞对DIM诱导PCD不敏感。因此,线粒体对于DIM在动基体寄生虫中的细胞毒性是必需的。综上所述,我们的研究首次表明,DIM通过抑制F0F1-ATP合酶活性诱导线粒体功能障碍,从而导致利什曼原虫属寄生虫的PCD,这可用于开发新的潜在治疗靶点。