Borda-de-Agua Luís, Hubbell Stephen P, McAllister Murdoch
Center for Environmental Research and Conservation, Columbia University, New York, New York 10027, USA.
Am Nat. 2002 Feb;159(2):138-55. doi: 10.1086/324787.
Although fractals have been applied in ecology for some time, multifractals have, in contrast, received little attention. In this article, we apply multifractals to the species-area relationship and species abundance distributions. We highlight two results: first, species abundance distributions collected at different spatial scales may collapse into a single curve after appropriate renormalization, and second, the power-law form of the species-area relationship and the Shannon, Simpson, and Berger-Parker diversity indices belong to a family of equations relating the species number, species abundance, and area through the moments of the species abundance-probability density function. Explicit formulas for these diversity indices, as a function of area, are derived. Methods to obtain the multifractal spectra from a data set are discussed, and an example is shown with data on tree and shrub species collected in a 50-ha plot on Barro Colorado Island, Panama. Finally, we discuss the implications of the multifractal formalism to the relationship between species range and abundance and the relation between the shape of the species abundance distribution and area.
尽管分形在生态学中已应用了一段时间,但相比之下,多重分形却很少受到关注。在本文中,我们将多重分形应用于物种 - 面积关系和物种丰度分布。我们突出了两个结果:第一,在经过适当的重归一化后,在不同空间尺度上收集的物种丰度分布可能会汇聚成一条单一曲线;第二,物种 - 面积关系的幂律形式以及香农、辛普森和伯杰 - 帕克多样性指数属于一类通过物种丰度 - 概率密度函数的矩来关联物种数量、物种丰度和面积的方程家族。推导出了这些作为面积函数的多样性指数的显式公式。讨论了从数据集中获取多重分形谱的方法,并给出了一个示例,该示例使用了在巴拿马巴罗科罗拉多岛一个50公顷样地中收集的树木和灌木物种的数据。最后,我们讨论了多重分形形式主义对物种分布范围与丰度之间关系以及物种丰度分布形状与面积之间关系的影响。