Suppr超能文献

胆碱能刺激对离体胰岛钙振荡的长期同步作用

Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets.

作者信息

Zhang Min, Fendler Bernard, Peercy Bradford, Goel Pranay, Bertram Richard, Sherman Arthur, Satin Leslie

机构信息

Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0524, USA.

出版信息

Biophys J. 2008 Nov 15;95(10):4676-88. doi: 10.1529/biophysj.107.125088. Epub 2008 Aug 15.

Abstract

Individual mouse pancreatic islets exhibit oscillations in Ca(2+) and insulin secretion in response to glucose in vitro, but how the oscillations of a million islets are coordinated within the human pancreas in vivo is unclear. Islet to islet synchronization is necessary, however, for the pancreas to produce regular pulses of insulin. To determine whether neurohormone release within the pancreas might play a role in coordinating islet activity, Ca(2+) changes in 4-6 isolated mouse islets were simultaneously monitored before and after a transient pulse of a putative synchronizing agent. The degree of synchronicity was quantified using a novel analytical approach that yields a parameter that we call the "Synchronization Index". Individual islets exhibited Ca(2+) oscillations with periods of 3-6 min, but were not synchronized under control conditions. However, raising islet Ca(2+) with a brief application of the cholinergic agonist carbachol (25 microM) or elevated KCl in glucose-containing saline rapidly synchronized islet Ca(2+) oscillations for >/=30 min, long after the synchronizing agent was removed. In contrast, the adrenergic agonists clonidine or norepinephrine, and the K(ATP) channel inhibitor tolbutamide, failed to synchronize islets. Partial synchronization was observed, however, with the K(ATP) channel opener diazoxide. The synchronizing action of carbachol depended on the glucose concentration used, suggesting that glucose metabolism was necessary for synchronization to occur. To understand how transiently perturbing islet Ca(2+) produced sustained synchronization, we used a mathematical model of islet oscillations in which complex oscillatory behavior results from the interaction between a fast electrical subsystem and a slower metabolic oscillator. Transient synchronization simulated by the model was mediated by resetting of the islet oscillators to a similar initial phase followed by transient "ringing" behavior, during which the model islets oscillated with a similar frequency. These results suggest that neurohormone release from intrapancreatic neurons could help synchronize islets in situ. Defects in this coordinating mechanism could contribute to the disrupted insulin secretion observed in Type 2 diabetes.

摘要

单个小鼠胰岛在体外对葡萄糖的反应中表现出胞内钙离子浓度(Ca(2+))振荡和胰岛素分泌,但尚不清楚在体内人胰腺中数百万个胰岛的振荡是如何协调的。然而,胰岛间同步对于胰腺产生规律的胰岛素脉冲是必要的。为了确定胰腺内神经激素释放是否可能在协调胰岛活动中发挥作用,在施加假定同步剂的短暂脉冲前后,同时监测4 - 6个分离的小鼠胰岛中的Ca(2+)变化。使用一种新颖的分析方法对同步程度进行量化,该方法产生一个我们称为“同步指数”的参数。单个胰岛表现出周期为3 - 6分钟的Ca(2+)振荡,但在对照条件下未同步。然而,通过短暂应用胆碱能激动剂卡巴胆碱(25 microM)或在含葡萄糖的盐水中升高氯化钾,可使胰岛Ca(2+)振荡迅速同步≥30分钟,即使在同步剂去除后很长时间也是如此。相比之下,肾上腺素能激动剂可乐定或去甲肾上腺素以及K(ATP)通道抑制剂甲苯磺丁脲未能使胰岛同步。然而,使用K(ATP)通道开放剂二氮嗪观察到了部分同步。卡巴胆碱的同步作用取决于所用的葡萄糖浓度,这表明葡萄糖代谢是同步发生所必需的。为了理解短暂扰动胰岛Ca(2+)如何产生持续同步,我们使用了一个胰岛振荡的数学模型,其中复杂的振荡行为源于快速电学子系统和较慢代谢振荡器之间的相互作用。该模型模拟的短暂同步是通过将胰岛振荡器重置到相似的初始相位,随后是短暂的“振铃”行为来介导的,在此期间模型胰岛以相似的频率振荡。这些结果表明胰腺内神经元释放的神经激素可能有助于原位同步胰岛。这种协调机制的缺陷可能导致2型糖尿病中观察到的胰岛素分泌紊乱。

相似文献

1
Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets.
Biophys J. 2008 Nov 15;95(10):4676-88. doi: 10.1529/biophysj.107.125088. Epub 2008 Aug 15.
2
Synchronization of pancreatic islet oscillations by intrapancreatic ganglia: a modeling study.
Biophys J. 2009 Aug 5;97(3):722-9. doi: 10.1016/j.bpj.2009.05.016.
3
The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models.
Biophys J. 2003 May;84(5):2852-70. doi: 10.1016/S0006-3495(03)70014-9.
5
Synchronization of pancreatic islets by periodic or non-periodic muscarinic agonist pulse trains.
PLoS One. 2019 Feb 6;14(2):e0211832. doi: 10.1371/journal.pone.0211832. eCollection 2019.
6
Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets.
PLoS One. 2017 Aug 28;12(8):e0183569. doi: 10.1371/journal.pone.0183569. eCollection 2017.
7
Synchronization and entrainment of cytoplasmic Ca2+ oscillations in cell clusters prepared from single or multiple mouse pancreatic islets.
Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E340-7. doi: 10.1152/ajpendo.00069.2004. Epub 2004 May 4.
8
Intra- and inter-islet synchronization of metabolically driven insulin secretion.
Biophys J. 2005 Jul;89(1):107-19. doi: 10.1529/biophysj.104.055681. Epub 2005 Apr 15.
9
Gene expression patterns in synchronized islet populations.
Islets. 2019;11(2):21-32. doi: 10.1080/19382014.2019.1581544. Epub 2019 May 3.
10
Electrical bursting, calcium oscillations, and synchronization of pancreatic islets.
Adv Exp Med Biol. 2010;654:261-79. doi: 10.1007/978-90-481-3271-3_12.

引用本文的文献

3
Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields.
Nanoscale Adv. 2024 Jan 23;6(4):1163-1182. doi: 10.1039/d3na01065a. eCollection 2024 Feb 13.
4
5
Cognition from the Body-Brain Partnership: Exaptation of Memory.
Annu Rev Neurosci. 2023 Jul 10;46:191-210. doi: 10.1146/annurev-neuro-101222-110632. Epub 2023 Mar 14.
6
The physiological role of β-cell heterogeneity in pancreatic islet function.
Nat Rev Endocrinol. 2022 Jan;18(1):9-22. doi: 10.1038/s41574-021-00568-0. Epub 2021 Oct 19.
8
Measurement of Pulsatile Insulin Secretion: Rationale and Methodology.
Metabolites. 2021 Jun 22;11(7):409. doi: 10.3390/metabo11070409.
9
Intercellular Communication in the Islet of Langerhans in Health and Disease.
Compr Physiol. 2021 Jun 30;11(3):2191-2225. doi: 10.1002/cphy.c200026.
10
Postnatal maturation of calcium signaling in islets of Langerhans from neonatal mice.
Cell Calcium. 2021 Mar;94:102339. doi: 10.1016/j.ceca.2020.102339. Epub 2020 Dec 28.

本文引用的文献

1
Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion.
Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E890-900. doi: 10.1152/ajpendo.00359.2007. Epub 2007 Jul 31.
2
The ins and outs of secretion from pancreatic beta-cells: control of single-vesicle exo- and endocytosis.
Physiology (Bethesda). 2007 Apr;22:113-21. doi: 10.1152/physiol.00047.2006.
3
Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets.
Biophys J. 2007 Mar 1;92(5):1544-55. doi: 10.1529/biophysj.106.097154. Epub 2006 Dec 15.
4
Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms.
Biophys J. 2006 Sep 15;91(6):2082-96. doi: 10.1529/biophysj.106.087296. Epub 2006 Jun 30.
5
Increased insulin secretion by muscarinic M1 and M3 receptor function from rat pancreatic islets in vitro.
Neurochem Res. 2006 Mar;31(3):313-20. doi: 10.1007/s11064-005-9022-6. Epub 2006 May 3.
9
Intra- and inter-islet synchronization of metabolically driven insulin secretion.
Biophys J. 2005 Jul;89(1):107-19. doi: 10.1529/biophysj.104.055681. Epub 2005 Apr 15.
10
External ATP triggers Ca2+ signals suited for synchronization of pancreatic beta-cells.
J Endocrinol. 2005 Apr;185(1):69-79. doi: 10.1677/joe.1.06040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验