Fricke W Florian, Wright Meredith S, Lindell Angela H, Harkins Derek M, Baker-Austin Craig, Ravel Jacques, Stepanauskas Ramunas
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
J Bacteriol. 2008 Oct;190(20):6779-94. doi: 10.1128/JB.00661-08. Epub 2008 Aug 15.
The increasing occurrence of multidrug-resistant pathogens of clinical and agricultural importance is a global public health concern. While antimicrobial use in human and veterinary medicine is known to contribute to the dissemination of antimicrobial resistance, the impact of microbial communities and mobile resistance genes from the environment in this process is not well understood. Isolated from an industrially polluted aquatic environment, Escherichia coli SMS-3-5 is resistant to a record number of antimicrobial compounds from all major classes, including two front-line fluoroquinolones (ciprofloxacin and moxifloxacin), and in many cases at record-high concentrations. To gain insights into antimicrobial resistance in environmental bacterial populations, the genome of E. coli SMS-3-5 was sequenced and compared to the genome sequences of other E. coli strains. In addition, selected genetic loci from E. coli SMS-3-5 predicted to be involved in antimicrobial resistance were phenotypically characterized. Using recombinant vector clones from shotgun sequencing libraries, resistance to tetracycline, streptomycin, and sulfonamide/trimethoprim was assigned to a single mosaic region on a 130-kb plasmid (pSMS35_130). The remaining plasmid backbone showed similarity to virulence plasmids from avian-pathogenic E. coli (APEC) strains. Individual resistance gene cassettes from pSMS35_130 are conserved among resistant bacterial isolates from multiple phylogenetic and geographic sources. Resistance to quinolones was assigned to several chromosomal loci, mostly encoding transport systems that are also present in susceptible E. coli isolates. Antimicrobial resistance in E. coli SMS-3-5 is therefore dependent both on determinants acquired from a mobile gene pool that is likely available to clinical and agricultural pathogens, as well, and on specifically adapted multidrug efflux systems. The association of antimicrobial resistance with APEC virulence genes on pSMS35_130 highlights the risk of promoting the spread of virulence through the extensive use of antibiotics.
具有临床和农业重要性的多重耐药病原体的日益增多是一个全球公共卫生问题。虽然已知人类和兽医学中使用抗菌药物会导致抗菌药物耐药性的传播,但在此过程中环境中的微生物群落和移动耐药基因的影响尚未得到充分了解。从受工业污染的水生环境中分离出的大肠杆菌SMS-3-5对来自所有主要类别的创纪录数量的抗菌化合物具有抗性,包括两种一线氟喹诺酮类药物(环丙沙星和莫西沙星),并且在许多情况下处于创纪录的高浓度。为了深入了解环境细菌群体中的抗菌药物耐药性,对大肠杆菌SMS-3-5的基因组进行了测序,并与其他大肠杆菌菌株的基因组序列进行了比较。此外,对大肠杆菌SMS-3-5中预测参与抗菌药物耐药性的选定基因座进行了表型特征分析。使用鸟枪法测序文库中的重组载体克隆,将对四环素、链霉素和磺胺/甲氧苄啶的抗性定位到一个130 kb质粒(pSMS35_130)上的单个镶嵌区域。其余的质粒骨架与禽致病性大肠杆菌(APEC)菌株的毒力质粒相似。来自pSMS35_130的单个耐药基因盒在来自多个系统发育和地理来源的耐药细菌分离株中是保守的。对喹诺酮类药物的抗性被定位到几个染色体位点,这些位点大多编码在敏感大肠杆菌分离株中也存在的转运系统。因此,大肠杆菌SMS-3-5中的抗菌药物耐药性既取决于从一个可能也可供临床和农业病原体利用的移动基因库中获得的决定因素,也取决于经过特殊适应的多重药物外排系统。pSMS35_130上抗菌药物耐药性与APEC毒力基因的关联突出了通过广泛使用抗生素促进毒力传播的风险。