Benedikt Udo, Auer Alexander A, Jensen Frank
Department of Chemistry, Chemnitz University of Technology, D-09111 Chemnitz, Germany.
J Chem Phys. 2008 Aug 14;129(6):064111. doi: 10.1063/1.2962973.
A new hierarchy of augmented basis sets optimized for the calculation of molecular properties such as indirect spin-spin coupling constants is presented. Based on the Dunning hierarchy of cc-pVXZ (X = D, T, Q, and 5) basis sets augmentation functions with tight exponents have been optimized for coupled-cluster calculations of indirect spin-spin coupling constants. The optimal exponents for these tight functions have been obtained by optimizing the sum of the absolute values of all contributions to the coupling constant. On the basis of a series of test cases (CO, HF, N(2), F(2), H(2)O, NH(3), and CH(4)) we propose a set of tight s, p, and d functions to be added to the uncontracted Dunning basis sets, and, subsequently, to recontract. The resulting ccJ-pVXZ (X = D, T, Q, and 5) basis sets demonstrate excellent cost efficiency in benchmark calculations. These new basis sets should generally be applicable for the calculation of spin-spin coupling constants and other properties that have a strong dependence on powers of 1r or even contain a delta distribution for correlated ab initio methods.
提出了一种新的增强基组层次结构,该结构针对分子性质(如间接自旋-自旋耦合常数)的计算进行了优化。基于cc-pVXZ(X = D、T、Q和5)基组的邓宁层次结构,已针对间接自旋-自旋耦合常数的耦合簇计算优化了具有紧密指数的增强函数。这些紧密函数的最佳指数是通过优化耦合常数所有贡献的绝对值之和获得的。基于一系列测试案例(CO、HF、N₂、F₂、H₂O、NH₃和CH₄),我们提出了一组紧密的s、p和d函数,将其添加到未收缩的邓宁基组中,随后进行重新收缩。所得的ccJ-pVXZ(X = D、T、Q和5)基组在基准计算中表现出出色的成本效率。这些新基组通常应适用于自旋-自旋耦合常数以及其他对1/r幂次有强烈依赖性甚至包含相关从头算方法的δ分布的性质的计算。