Suppr超能文献

囊性纤维化跨膜传导调节因子的组装与错组装:F508缺失导致的折叠缺陷发生在跨膜结构域(MSD)1和MSD2依赖钙连蛋白的结合之前及之后。

Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2.

作者信息

Rosser Meredith F N, Grove Diane E, Chen Liling, Cyr Douglas M

机构信息

Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Mol Biol Cell. 2008 Nov;19(11):4570-9. doi: 10.1091/mbc.e08-04-0357. Epub 2008 Aug 20.

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRDeltaF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.

摘要

囊性纤维化跨膜传导调节因子(CFTR)是一种多结构域膜蛋白,作为氯离子通道发挥作用,由两个跨膜结构域(MSDs)、两个胞质核苷酸结合结构域(NBDs)和一个胞质调节结构域组成。胞质70 kDa热休克蛋白(Hsp70)和内质网定位的钙连接蛋白是促进CFTR生物合成的伴侣蛋白。Hsp70在CFTR的共翻译折叠和翻译后降解中均发挥作用。然而,钙连接蛋白在CFTR折叠和质量控制中的作用机制尚不清楚。对这个问题的研究表明,钙连接蛋白对于CFTR或CFTRΔF508的降解并非必不可少。我们发现CFTR跨膜结构域的正确组装依赖于钙连接蛋白。有趣的是,还发现NBD2的有效折叠也依赖于钙连接蛋白与CFTR的结合。此外,我们确定了F508缺失导致的折叠缺陷,这些缺陷发生在MSD1和MSD2依赖钙连接蛋白的缔合之前和之后。NBD1和R结构域翻译时早期折叠缺陷明显,并被RMA-1泛素连接酶复合体感知。

相似文献

4
Cooperative assembly and misfolding of CFTR domains in vivo.
Mol Biol Cell. 2009 Apr;20(7):1903-15. doi: 10.1091/mbc.e08-09-0950. Epub 2009 Jan 28.
5
Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly.
J Mol Biol. 2015 Jan 16;427(1):106-20. doi: 10.1016/j.jmb.2014.07.026. Epub 2014 Jul 30.
6
Mechanisms for rescue of correctable folding defects in CFTRDelta F508.
Mol Biol Cell. 2009 Sep;20(18):4059-69. doi: 10.1091/mbc.e08-09-0929. Epub 2009 Jul 22.
7
Cysteine string protein monitors late steps in cystic fibrosis transmembrane conductance regulator biogenesis.
J Biol Chem. 2006 Apr 21;281(16):11312-21. doi: 10.1074/jbc.M512013200. Epub 2006 Feb 9.
8
Domain interdependence in the biosynthetic assembly of CFTR.
J Mol Biol. 2007 Jan 26;365(4):981-94. doi: 10.1016/j.jmb.2006.10.086. Epub 2006 Nov 10.
9
Role of calnexin in the ER quality control and productive folding of CFTR; differential effect of calnexin knockout on wild-type and DeltaF508 CFTR.
Biochim Biophys Acta. 2008 Sep;1783(9):1585-94. doi: 10.1016/j.bbamcr.2008.04.002. Epub 2008 Apr 16.
10
Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin.
Mol Cell Biol. 2005 Jun;25(12):5242-52. doi: 10.1128/MCB.25.12.5242-5252.2005.

引用本文的文献

1
Proteostasis landscapes of cystic fibrosis variants reveal drug response vulnerability.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2418407122. doi: 10.1073/pnas.2418407122. Epub 2025 Apr 22.
2
Proteostasis Landscapes of Cystic Fibrosis Variants Reveals Drug Response Vulnerability.
bioRxiv. 2025 Jan 17:2024.07.10.602964. doi: 10.1101/2024.07.10.602964.
4
A uniquely efficacious type of CFTR corrector with complementary mode of action.
Sci Adv. 2024 Mar;10(9):eadk1814. doi: 10.1126/sciadv.adk1814. Epub 2024 Mar 1.
7
CFTR Folding: From Structure and Proteostasis to Cystic Fibrosis Personalized Medicine.
ACS Chem Biol. 2023 Oct 20;18(10):2128-2143. doi: 10.1021/acschembio.3c00310. Epub 2023 Sep 20.
8
CFTR Modulators: From Mechanism to Targeted Therapeutics.
Handb Exp Pharmacol. 2024;283:219-247. doi: 10.1007/164_2022_597.
10
Revisiting CFTR Interactions: Old Partners and New Players.
Int J Mol Sci. 2021 Dec 7;22(24):13196. doi: 10.3390/ijms222413196.

本文引用的文献

1
Role of calnexin in the ER quality control and productive folding of CFTR; differential effect of calnexin knockout on wild-type and DeltaF508 CFTR.
Biochim Biophys Acta. 2008 Sep;1783(9):1585-94. doi: 10.1016/j.bbamcr.2008.04.002. Epub 2008 Apr 16.
2
Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3256-61. doi: 10.1073/pnas.0800254105. Epub 2008 Feb 27.
3
Misfolding of the cystic fibrosis transmembrane conductance regulator and disease.
Biochemistry. 2008 Feb 12;47(6):1465-73. doi: 10.1021/bi702209s. Epub 2008 Jan 15.
4
Building an understanding of cystic fibrosis on the foundation of ABC transporter structures.
J Bioenerg Biomembr. 2007 Dec;39(5-6):499-505. doi: 10.1007/s10863-007-9117-7.
5
CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices.
Nat Struct Mol Biol. 2007 Aug;14(8):738-45. doi: 10.1038/nsmb1278. Epub 2007 Jul 29.
6
Domain interdependence in the biosynthetic assembly of CFTR.
J Mol Biol. 2007 Jan 26;365(4):981-94. doi: 10.1016/j.jmb.2006.10.086. Epub 2006 Nov 10.
7
Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
Cell. 2006 Nov 17;127(4):803-15. doi: 10.1016/j.cell.2006.09.043.
8
Structure of a bacterial multidrug ABC transporter.
Nature. 2006 Sep 14;443(7108):180-5. doi: 10.1038/nature05155. Epub 2006 Aug 30.
10
Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin.
Mol Cell Biol. 2005 Jun;25(12):5242-52. doi: 10.1128/MCB.25.12.5242-5252.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验