Manzano Verónica E, Uhrig María Laura, Varela Oscar
CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
J Org Chem. 2008 Sep 19;73(18):7224-35. doi: 10.1021/jo8012397. Epub 2008 Aug 22.
3,4-Anhydro hexopyranosides have been prepared by diastereoselective epoxidation of derivatives of 2-propyl 3,4-dideoxy-alpha-D-erythro-hex-3-enopyranoside (5), selectively protected at HO-2 and HO-6. The allylic group at C-2, in 5 and derivatives, plays a critical role in the facial selectivity of the epoxidation reaction. Thus, the free HO-2 in 3 (the 6-O-acetyl derivative of 5) directs the attack of m-chloroperbenzoic acid from the more hindered alpha face of the molecule to give 2-propyl 6-O-acetyl-3,4-anhydro-alpha-D-allopyranoside (7) accompanied by the beta epoxide 6 as a very minor product. Reverse diastereoselectivity has been obtained when the HO-2 in 3 was substituted by a bulky tert-butyldimethylsilyl (TBS) group. In this case, the major isomer was the 2-O-TBS derivative of 6 (alpha-D-galacto configuration). The ring-opening of sugar epoxides by nucleophilic per-O-acetyl-1-thio-beta-D-glucopyranose (11) was employed as a convenient approach to the synthesis of (1-->3)- and (1-->4)-thiodisaccharides. For example, ring-opening of the oxirane 7 by 11 led to the expected regioisomeric per-O-acetyl thiodisaccharides beta-D-Glc-S-(1-->3)-4-thio-alpha-D-Glc-O-iPr (12) and beta-D-Glc-S-(1-->4)-4-thio-alpha-D-Gul-O-iPr (13). Regioselectivity in the construction of the (1-->4)-thioglycosidic linkage could be achieved by hindering C-3 of the 3,4-anhydro sugar with a bulky silyloxy group at the vicinal C-2. For instance, coupling of the 2-O-TBS derivative of 7 with 11 led regioselectively to the protected thiodisaccharide beta-D-Glc-S-(1-->4)-4-thio-alpha-D-Glc-O-iPr (27). The utility of the approach was demonstrated through the synthesis of sulfur-linked analogues of naturally occurring (laminarabiose and cellobiose) and non-natural disaccharides (i.e., beta-D-Glc-(1-->4)-alpha-D-Gul).
通过对2-丙基3,4-二脱氧-α-D-赤藓糖-己-3-烯吡喃糖苷(5)的衍生物进行非对映选择性环氧化反应制备了3,4-脱水己吡喃糖苷,其中HO-2和HO-6被选择性保护。5及其衍生物中C-2位的烯丙基在环氧化反应的面选择性中起关键作用。因此,3(5的6-O-乙酰基衍生物)中的游离HO-2引导间氯过苯甲酸从分子中受阻较大的α面进攻,生成2-丙基6-O-乙酰基-3,4-脱水-α-D-阿洛吡喃糖苷(7),同时伴有极少量的β-环氧化物6。当3中的HO-2被庞大的叔丁基二甲基甲硅烷基(TBS)基团取代时,得到了相反的非对映选择性。在这种情况下,主要异构体是6(α-D-半乳糖构型)的2-O-TBS衍生物。通过亲核的全-O-乙酰基-1-硫代-β-D-吡喃葡萄糖(11)对糖环氧化物进行开环反应,是合成(1→3)-和(1→4)-硫代二糖的一种简便方法。例如,11对环氧乙烷7进行开环反应,得到预期的区域异构体全-O-乙酰基硫代二糖β-D-葡萄糖-S-(1→3)-4-硫代-α-D-葡萄糖-O-异丙基(12)和β-D-葡萄糖-S-(1→4)-4-硫代-α-D-古洛糖-O-异丙基(13)。通过在邻位C-2位用庞大的甲硅烷氧基阻碍3,4-脱水糖的C-3位,可以实现(1→4)-硫糖苷键构建中的区域选择性。例如,7的2-O-TBS衍生物与11偶联,区域选择性地生成被保护的硫代二糖β-D-葡萄糖-S-(1→4)-4-硫代-α-D-葡萄糖-O-异丙基(27)。通过合成天然存在的(层二糖和纤维二糖)和非天然二糖(即β-D-葡萄糖-(1→4)-α-D-古洛糖)的硫连接类似物,证明了该方法的实用性。