Suppr超能文献

纳米固体、半固体和纳米液体:金属簇和纳米颗粒中纳米相的表征

Nanosolids, slushes, and nanoliquids: characterization of nanophases in metal clusters and nanoparticles.

作者信息

Li Zhen Hua, Truhlar Donald G

机构信息

Department of Chemistry, Fudan University, Shanghai, 200433, China.

出版信息

J Am Chem Soc. 2008 Sep 24;130(38):12698-711. doi: 10.1021/ja802389d. Epub 2008 Aug 26.

Abstract

One of the keys to understanding the emergent behavior of complex materials and nanoparticles is understanding their phases. Understanding the phases of nanomaterials involves new concepts not present in bulk materials; for example, the phases of nanoparticles are quantum mechanical even when no hydrogen or helium is present. To understand these phases better, molecular dynamics (MD) simulations on size-selected particles employing a realistic analytic many-body potential based on quantum mechanical nanoparticle calculations have been performed to study the temperature-dependent properties and melting transitions of free Al n clusters and nanoparticles with n = 10-300 from 200 to 1700 K. By analyzing properties of the particles such as specific heat capacity (c), radius of gyration, volume, coefficient of thermal expansion (beta), and isothermal compressibility (kappa), we developed operational definitions of the solid, slush, and liquid states of metal clusters and nanoparticles. Applying the definitions, which are based on the temperature dependences of c, beta, and ln kappa, we determined the temperature domains of the solid, slush, and liquid states of the Al n particles. The results show that Al n clusters ( n <or= 18, diameter of less than 1 nm) are more like molecules, and it is more appropriate to say that they have no melting transition, but Al n nanoparticles ( n >or= 19, diameter of more than 1 nm) do have a melting transition and are in the liquid state above 900-1000 K. However, all aluminum nanoparticles have a wide temperature interval corresponding to the slush state in which the solid and liquid states coexist in equilibrium, unlike a bulk material where coexistence occurs only at a single temperature (for a given pressure). The commonly accepted operational marker of the melting temperature, namely, the peak position of c, is not unambiguous and not appropriate for characterizing the melting transition for aluminum particles with the exception of a few particle sizes that have a single sharp peak (as a function of temperature) in each of the three properties, c, beta, and ln kappa.

摘要

理解复杂材料和纳米颗粒的涌现行为的关键之一是理解它们的相。理解纳米材料的相涉及到体材料中不存在的新概念;例如,即使不存在氢或氦,纳米颗粒的相也是量子力学的。为了更好地理解这些相,我们基于量子力学纳米颗粒计算,采用现实的解析多体势对尺寸选择的颗粒进行了分子动力学(MD)模拟,以研究自由Aln团簇和n = 10 - 300的纳米颗粒在200至1700 K温度范围内的温度依赖性性质和熔化转变。通过分析颗粒的性质,如比热容(c)、回转半径、体积、热膨胀系数(β)和等温压缩率(κ),我们给出了金属团簇和纳米颗粒的固态、半固态和液态的操作定义。应用基于c、β和lnκ的温度依赖性的定义,我们确定了Aln颗粒的固态、半固态和液态的温度范围。结果表明,Aln团簇(n≤18,直径小于1 nm)更像分子,更确切地说它们没有熔化转变,但Aln纳米颗粒(n≥19,直径大于1 nm)确实有熔化转变,并且在900 - 1000 K以上处于液态。然而,与体材料不同,体材料中固液共存仅在单一温度(给定压力下)发生,所有铝纳米颗粒都有一个对应于半固态的宽温度区间,其中固态和液态处于平衡共存状态。通常公认的熔化温度的操作标志,即c的峰值位置,并不明确,除了少数几种粒径在c、β和lnκ这三个性质中每个都有一个单一尖锐峰(作为温度的函数)外,它不适用于表征铝颗粒的熔化转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验