Suppr超能文献

生物活性鞘脂在癌症生物学与治疗中的作用。

Roles of bioactive sphingolipids in cancer biology and therapeutics.

作者信息

Saddoughi Sahar A, Song Pengfei, Ogretmen Besim

机构信息

Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

Subcell Biochem. 2008;49:413-40. doi: 10.1007/978-1-4020-8831-5_16.

Abstract

In this chapter, roles of bioactive sphingolipids in the regulation of cancer pathogenesis and therapy will be reviewed. Sphingolipids have emerged as bioeffector molecules, which control various aspects of cell growth, proliferation, and anti-cancer therapeutics. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. On the other hand, sphingosine 1-phosphate (S1P) plays opposing roles, and induces transformation, cancer cell growth, or angiogenesis. A network of metabolic enzymes regulates the generation of ceramide and S1P, and these enzymes serve as transducers of sphingolipid-mediated responses that are coupled to various exogenous or endogenous cellular signals. Consistent with their key roles in the regulation of cancer growth and therapy, attenuation of ceramide generation and/or increased S1P levels are implicated in the development of resistance to drug-induced apoptosis, and escape from cell death. These data strongly suggest that advances in the molecular and biochemical understanding of sphingolipid metabolism and function will lead to the development of novel therapeutic strategies against human cancers, which may also help overcome drug resistance.

摘要

在本章中,将综述生物活性鞘脂在癌症发病机制调控和治疗中的作用。鞘脂已成为生物效应分子,可控制细胞生长、增殖及抗癌治疗的各个方面。神经酰胺作为鞘脂代谢的核心分子,通常介导抗增殖反应,如抑制细胞生长、诱导细胞凋亡和/或调节衰老。另一方面,1-磷酸鞘氨醇(S1P)发挥相反作用,诱导细胞转化、癌细胞生长或血管生成。一个代谢酶网络调节神经酰胺和S1P的生成,这些酶作为鞘脂介导反应的传感器,与各种外源性或内源性细胞信号相耦合。与其在癌症生长调控和治疗中的关键作用一致,神经酰胺生成的减弱和/或S1P水平的升高与药物诱导凋亡的抗性发展及细胞死亡逃避有关。这些数据强烈表明,对鞘脂代谢和功能的分子及生化理解的进展将导致针对人类癌症的新型治疗策略的开发,这也可能有助于克服耐药性。

相似文献

1
Roles of bioactive sphingolipids in cancer biology and therapeutics.
Subcell Biochem. 2008;49:413-40. doi: 10.1007/978-1-4020-8831-5_16.
3
Sphingosine kinase/sphingosine 1-phosphate signaling in cancer therapeutics and drug resistance.
Handb Exp Pharmacol. 2013(216):3-27. doi: 10.1007/978-3-7091-1511-4_1.
5
"Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets.
Pharmacol Rev. 2008 Jun;60(2):181-95. doi: 10.1124/pr.107.07113. Epub 2008 Jun 13.
6
Sphingolipid metabolism in cancer signalling and therapy.
Nat Rev Cancer. 2018 Jan;18(1):33-50. doi: 10.1038/nrc.2017.96. Epub 2017 Nov 17.
7
Altering the sphingosine-1-phosphate/ceramide balance: a promising approach for tumor therapy.
Curr Pharm Des. 2006;12(35):4625-35. doi: 10.2174/138161206779010422.
8
Sphingolipids in macroautophagy.
Methods Mol Biol. 2008;445:159-73. doi: 10.1007/978-1-59745-157-4_11.
9
Role of bioactive sphingolipids in physiology and pathology.
Essays Biochem. 2020 Sep 23;64(3):579-589. doi: 10.1042/EBC20190091.
10
Sphingolipids and response to chemotherapy.
Handb Exp Pharmacol. 2013(216):73-91. doi: 10.1007/978-3-7091-1511-4_4.

引用本文的文献

1
The Role of Ceramide and Sphingolipid Metabolism in Cancer Therapeutics.
J Oncol Res Ther. 2024;9(4). doi: 10.29011/2574-710x.10257. Epub 2025 Jan 1.
2
Drug Resistance: The Role of Sphingolipid Metabolism.
Int J Mol Sci. 2025 Apr 15;26(8):3716. doi: 10.3390/ijms26083716.
3
A basigin antibody modulates MCTs to impact tumor metabolism and immunity.
Cell Discov. 2025 May 6;11(1):44. doi: 10.1038/s41421-025-00777-1.
7
Application of sphingolipid-based nanocarriers in drug delivery: an overview.
Ther Deliv. 2024;15(8):619-637. doi: 10.1080/20415990.2024.2377066. Epub 2024 Jul 29.
8
Biomarkers in Cancer Detection, Diagnosis, and Prognosis.
Sensors (Basel). 2023 Dec 20;24(1):37. doi: 10.3390/s24010037.
10
Dietary fat and lipid metabolism in the tumor microenvironment.
Biochim Biophys Acta Rev Cancer. 2023 Nov;1878(6):188984. doi: 10.1016/j.bbcan.2023.188984. Epub 2023 Sep 16.

本文引用的文献

1
Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):488-93. doi: 10.1073/pnas.0709191105. Epub 2008 Jan 9.
2
Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate.
J Biol Chem. 2008 Feb 29;283(9):5677-84. doi: 10.1074/jbc.M707386200. Epub 2007 Dec 28.
3
Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells.
Biochim Biophys Acta. 2007 Dec;1771(12):1407-17. doi: 10.1016/j.bbalip.2007.09.005. Epub 2007 Nov 9.
4
Mitochondrially targeted ceramide LCL-30 inhibits colorectal cancer in mice.
Br J Cancer. 2008 Jan 15;98(1):98-105. doi: 10.1038/sj.bjc.6604099. Epub 2007 Nov 20.
5
Acid ceramidase inhibition: a novel target for cancer therapy.
Front Biosci. 2008 Jan 1;13:2293-8. doi: 10.2741/2843.
6
7
The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy.
Cancer Biol Ther. 2007 Sep;6(9):1455-60. doi: 10.4161/cbt.6.9.4623. Epub 2007 Jun 23.
8
Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids.
Bioorg Med Chem. 2008 Jan 15;16(2):1032-45. doi: 10.1016/j.bmc.2007.08.032. Epub 2007 Aug 24.
10
Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide.
Nature. 2007 Sep 6;449(7158):62-7. doi: 10.1038/nature06097. Epub 2007 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验