Khraiwesh Basel, Ossowski Stephan, Weigel Detlef, Reski Ralf, Frank Wolfgang
Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
Plant Physiol. 2008 Oct;148(2):684-93. doi: 10.1104/pp.108.128025. Epub 2008 Aug 27.
MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNAs processed from nuclear-encoded transcripts, which include a characteristic hairpin-like structure. MiRNAs control the expression of target transcripts by binding to reverse complementary sequences directing cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence within miRNA precursor genes, while maintaining the pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. The moss Physcomitrella patens exhibits the unique feature of a highly efficient homologous recombination mechanism, which allows for the generation of targeted gene knockout lines. However, the completion of the Physcomitrella genome necessitates the development of alternative techniques to speed up reverse genetics analyses and to allow for more flexible inactivation of genes. To prove the adaptability of amiRNA expression in Physcomitrella, we designed two amiRNAs, targeting the gene PpFtsZ2-1, which is indispensable for chloroplast division, and the gene PpGNT1 encoding an N-acetylglucosaminyltransferase. Both amiRNAs were expressed from the Arabidopsis (Arabidopsis thaliana) miR319a precursor fused to a constitutive promoter. Transgenic Physcomitrella lines harboring the overexpression constructs showed precise processing of the amiRNAs and an efficient knock down of the cognate target mRNAs. Furthermore, chloroplast division was impeded in PpFtsZ2-1-amiRNA lines that phenocopied PpFtsZ2-1 knockout mutants. We also provide evidence for the amplification of the initial amiRNA signal by secondary transitive small interfering RNAs, although these small interfering RNAs do not seem to have a major effect on sequence-related mRNAs, confirming specificity of the amiRNA approach.
微小RNA(miRNA)是由核编码转录本加工而成的长度约为21个核苷酸的RNA,其具有特征性的发夹样结构。miRNA通过与反向互补序列结合来控制靶转录本的表达,从而指导靶RNA的切割或翻译抑制。人工miRNA(amiRNA)可通过在miRNA前体基因内交换miRNA/miRNA*序列产生,同时保持回折结构中的匹配和错配模式。因此,对于功能基因分析,可设计amiRNA靶向任何感兴趣的基因。小立碗藓具有高效同源重组机制这一独特特征,该机制可用于产生靶向基因敲除株系。然而,小立碗藓基因组测序的完成需要开发替代技术,以加速反向遗传学分析,并实现更灵活的基因失活。为了证明amiRNA在小立碗藓中表达的适应性,我们设计了两种amiRNA,分别靶向叶绿体分裂所必需的基因PpFtsZ2-1和编码N-乙酰葡糖胺基转移酶的基因PpGNT1。两种amiRNA均由与组成型启动子融合的拟南芥miR319a前体表达。携带过表达构建体的转基因小立碗藓株系显示出amiRNA的精确加工以及同源靶mRNA的有效敲低。此外,PpFtsZ2-1-amiRNA株系中的叶绿体分裂受到阻碍,其表型与PpFtsZ2-1敲除突变体相似。我们还提供了二级传递性小干扰RNA对初始amiRNA信号进行放大的证据,尽管这些小干扰RNA似乎对序列相关的mRNA没有主要影响,这证实了amiRNA方法的特异性。