Suppr超能文献

一种使用仪器化杆校准测力板和测力跑步机的简单方法。

A simple method for calibrating force plates and force treadmills using an instrumented pole.

作者信息

Collins Steven H, Adamczyk Peter G, Ferris Daniel P, Kuo Arthur D

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Gait Posture. 2009 Jan;29(1):59-64. doi: 10.1016/j.gaitpost.2008.06.010. Epub 2008 Aug 27.

Abstract

We propose a new method for calibrating force plates to reduce errors in center of pressure locations, forces, and moments. These errors may be caused by imperfect mounting of force plates to the ground or by installation of a treadmill atop a force plate, which may introduce distorting loads. The method, termed the Post-Installation Least-Squares (PILS) calibration, combines features of several previous methods into a simple procedure. It requires a motion capture system and an instrumented pole for applying reference loads. Reference loads may be manually applied to the force plate in arbitrary locations and directions. The instrumented pole measures applied load magnitudes through a single-axis load cell, and load directions through motion capture markers. Reference data and imperfect force plate signals are then combined to form a linear calibration matrix that simultaneously minimizes mean square errors in all forces and moments. We applied the procedure to standard laboratory force plates, as well as a custom-built, split-belt force treadmill. We also collected an independent set of verification data for testing. The proposed calibration procedure was found to reduce force errors by over 20%, and moment errors by over 60%. Center of pressure errors were also reduced by 63% for standard force plates and 91% for the force treadmill. The instrumented pole is advantageous because it allows for fast and arbitrary load application without needing a precise fixture for aligning loads. The linear calibration matrix is simpler than nonlinear correction equations and more compatible with standard data acquisition software, yet it yields error reductions comparable to more complex methods.

摘要

我们提出了一种用于校准测力板的新方法,以减少压力中心位置、力和力矩的误差。这些误差可能是由于测力板安装在地面上不完善,或者在测力板上安装跑步机而引入的扭曲载荷所致。该方法称为安装后最小二乘法(PILS)校准,它将几种先前方法的特点结合到一个简单的过程中。它需要一个运动捕捉系统和一根用于施加参考载荷的仪器化杆。参考载荷可以手动施加到测力板的任意位置和方向。仪器化杆通过单轴测力传感器测量施加的载荷大小,并通过运动捕捉标记测量载荷方向。然后将参考数据和不完善的测力板信号组合起来,形成一个线性校准矩阵,该矩阵同时最小化所有力和力矩的均方误差。我们将该过程应用于标准实验室测力板以及定制的分体带测力跑步机。我们还收集了一组独立的验证数据用于测试。结果发现,所提出的校准过程可将力误差降低20%以上,力矩误差降低60%以上。标准测力板的压力中心误差也降低了63%,测力跑步机的压力中心误差降低了91%。仪器化杆的优势在于它允许快速且任意地施加载荷,而无需精确的夹具来对准载荷。线性校准矩阵比非线性校正方程更简单,并且与标准数据采集软件更兼容,但它产生的误差降低效果与更复杂的方法相当。

相似文献

1
A simple method for calibrating force plates and force treadmills using an instrumented pole.
Gait Posture. 2009 Jan;29(1):59-64. doi: 10.1016/j.gaitpost.2008.06.010. Epub 2008 Aug 27.
2
In-situ force plate calibration: 12 years' experience with an approach for correcting the point of force application.
Gait Posture. 2017 Oct;58:98-102. doi: 10.1016/j.gaitpost.2017.07.111. Epub 2017 Jul 21.
5
A comprehensive protocol to test instrumented treadmills.
Med Eng Phys. 2015 Jun;37(6):610-6. doi: 10.1016/j.medengphy.2015.03.018. Epub 2015 Apr 25.
6
Force measurements during running on different instrumented treadmills.
J Biomech. 2019 Feb 14;84:263-268. doi: 10.1016/j.jbiomech.2018.12.025. Epub 2018 Dec 23.
7
Optimal calibration of instrumented treadmills using an instrumented pole.
Med Eng Phys. 2016 Aug;38(8):785-92. doi: 10.1016/j.medengphy.2016.04.012. Epub 2016 May 11.
8
Dynamic assessment of center of pressure measurements from an instrumented AMTI treadmill with controlled precision.
Med Eng Phys. 2017 Apr;42:99-104. doi: 10.1016/j.medengphy.2017.01.002. Epub 2017 Feb 1.

引用本文的文献

2
The virtual pivot point concept improves predictions of ground reaction forces.
Front Bioeng Biotechnol. 2024 Mar 26;12:1286644. doi: 10.3389/fbioe.2024.1286644. eCollection 2024.
4
Metabolically efficient walking assistance using optimized timed forces at the waist.
Sci Robot. 2022 Mar 16;7(64):eabh1925. doi: 10.1126/scirobotics.abh1925.
5
Ankle muscles drive mediolateral center of pressure control to ensure stable steady state gait.
Sci Rep. 2021 Nov 2;11(1):21481. doi: 10.1038/s41598-021-00463-8.
7
Experimental recommendations for estimating lower extremity loading based on joint and activity.
J Biomech. 2021 Oct 11;127:110688. doi: 10.1016/j.jbiomech.2021.110688. Epub 2021 Aug 24.
8
Movement asymmetry during low and high demand mobility tasks after dysvascular transtibial amputation.
Clin Biomech (Bristol). 2020 Dec;80:105102. doi: 10.1016/j.clinbiomech.2020.105102. Epub 2020 Jul 7.
9
10
Development of KIINCE: A kinetic feedback-based robotic environment for study of neuromuscular coordination and rehabilitation of human standing and walking.
J Rehabil Assist Technol Eng. 2018 Sep 20;5:2055668318793585. doi: 10.1177/2055668318793585. eCollection 2018 Jan-Dec.

本文引用的文献

1
Development of an instrumented pole test for use as a gait laboratory quality check.
Gait Posture. 2007 Jul;26(2):317-22. doi: 10.1016/j.gaitpost.2006.09.003. Epub 2006 Oct 25.
2
A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects.
Gait Posture. 2007 Jun;26(1):17-24. doi: 10.1016/j.gaitpost.2006.07.003. Epub 2006 Aug 14.
3
Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion tasks in static and dynamic loading conditions.
Med Eng Phys. 2007 Apr;29(3):404-11. doi: 10.1016/j.medengphy.2006.04.002. Epub 2006 Jun 6.
4
Determining the centre of pressure during walking and running using an instrumented treadmill.
J Biomech. 2005 Sep;38(9):1881-5. doi: 10.1016/j.jbiomech.2004.08.015.
5
A force measuring treadmill in clinical gait analysis.
Gait Posture. 2004 Dec;20(3):299-303. doi: 10.1016/j.gaitpost.2003.11.001.
6
Mechanical and metabolic requirements for active lateral stabilization in human walking.
J Biomech. 2004 Jun;37(6):827-35. doi: 10.1016/j.jbiomech.2003.06.002.
7
A proposed test to support the clinical movement analysis laboratory accreditation process.
Gait Posture. 2003 Jun;17(3):205-13. doi: 10.1016/s0966-6362(02)00088-7.
8
Optimised procedure for the calibration of the force platform location.
Gait Posture. 2003 Feb;17(1):75-80. doi: 10.1016/s0966-6362(02)00061-9.
9
Variability of ground reaction forces during treadmill walking.
J Appl Physiol (1985). 2002 May;92(5):1885-90. doi: 10.1152/japplphysiol.00969.2000.
10
Spot check of the calibrated force platform location.
Med Biol Eng Comput. 2001 Nov;39(6):638-43. doi: 10.1007/BF02345435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验