Suppr超能文献

错误折叠的蛋白质在两个不同的质量控制区室之间进行分配。

Misfolded proteins partition between two distinct quality control compartments.

作者信息

Kaganovich Daniel, Kopito Ron, Frydman Judith

机构信息

Department of Biology and BioX Program, Stanford University, Stanford, California 94305, USA.

出版信息

Nature. 2008 Aug 28;454(7208):1088-95. doi: 10.1038/nature07195.

Abstract

The accumulation of misfolded proteins in intracellular amyloid inclusions, typical of many neurodegenerative disorders including Huntington's and prion disease, is thought to occur after failure of the cellular protein quality control mechanisms. Here we examine the formation of misfolded protein inclusions in the eukaryotic cytosol of yeast and mammalian cell culture models. We identify two intracellular compartments for the sequestration of misfolded cytosolic proteins. Partition of quality control substrates to either compartment seems to depend on their ubiquitination status and aggregation state. Soluble ubiquitinated misfolded proteins accumulate in a juxtanuclear compartment where proteasomes are concentrated. In contrast, terminally aggregated proteins are sequestered in a perivacuolar inclusion. Notably, disease-associated Huntingtin and prion proteins are preferentially directed to the perivacuolar compartment. Enhancing ubiquitination of a prion protein suffices to promote its delivery to the juxtanuclear inclusion. Our findings provide a framework for understanding the preferential accumulation of amyloidogenic proteins in inclusions linked to human disease.

摘要

细胞内淀粉样蛋白包涵体中错误折叠蛋白的积累是许多神经退行性疾病(包括亨廷顿舞蹈症和朊病毒病)的典型特征,据认为这是在细胞蛋白质质量控制机制失效后发生的。在此,我们研究了酵母和哺乳动物细胞培养模型的真核细胞质中错误折叠蛋白包涵体的形成。我们确定了两个用于隔离错误折叠的胞质蛋白的细胞内区室。质量控制底物分配到任一区室似乎取决于它们的泛素化状态和聚集状态。可溶性泛素化错误折叠蛋白积聚在蛋白酶体集中的近核区室中。相反,终末聚集蛋白被隔离在液泡周围包涵体中。值得注意的是,与疾病相关的亨廷顿蛋白和朊病毒蛋白优先被导向液泡周围区室。增强朊病毒蛋白的泛素化足以促进其转运至近核包涵体。我们的研究结果为理解淀粉样蛋白生成蛋白在与人类疾病相关的包涵体中的优先积累提供了一个框架。

相似文献

1
Misfolded proteins partition between two distinct quality control compartments.
Nature. 2008 Aug 28;454(7208):1088-95. doi: 10.1038/nature07195.
2
4D imaging of protein aggregation in live cells.
J Vis Exp. 2013 Apr 5(74):50083. doi: 10.3791/50083.
3
The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control.
J Biol Chem. 2016 Sep 2;291(36):18778-90. doi: 10.1074/jbc.M116.737619. Epub 2016 Jul 12.
4
A protein quality control pathway at the mitochondrial outer membrane.
Elife. 2020 Mar 2;9:e51065. doi: 10.7554/eLife.51065.
5
Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments.
J Cell Sci. 2011 Jun 1;124(Pt 11):1891-902. doi: 10.1242/jcs.077693. Epub 2011 May 10.
7
Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane.
J Biol Chem. 2016 Jul 15;291(29):15082-92. doi: 10.1074/jbc.M116.726265. Epub 2016 May 12.
8
Hul5 ubiquitin ligase: good riddance to bad proteins.
Prion. 2012 Jul 1;6(3):240-4. doi: 10.4161/pri.19929.
9
False start: cotranslational protein ubiquitination and cytosolic protein quality control.
J Proteomics. 2014 Apr 4;100:92-101. doi: 10.1016/j.jprot.2013.08.005. Epub 2013 Aug 15.
10
A cotranslational ubiquitination pathway for quality control of misfolded proteins.
Mol Cell. 2013 May 9;50(3):368-78. doi: 10.1016/j.molcel.2013.03.009. Epub 2013 Apr 11.

引用本文的文献

1
Arsenic binds to nuclear transport factors and disrupts nucleocytoplasmic transport.
J Cell Sci. 2025 Aug 15;138(16). doi: 10.1242/jcs.263889.
3
Clearance of protein aggregates during cell division.
Elife. 2025 Jun 6;13:RP96675. doi: 10.7554/eLife.96675.
4
Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong?
J Mol Biol. 2025 Sep 15;437(18):169219. doi: 10.1016/j.jmb.2025.169219. Epub 2025 May 16.
5
Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation.
Mol Biol Cell. 2025 Jun 1;36(6):ar66. doi: 10.1091/mbc.E25-01-0027. Epub 2025 Apr 9.
6
Proteasome dynamics in response to metabolic changes.
Front Cell Dev Biol. 2025 Mar 3;13:1523382. doi: 10.3389/fcell.2025.1523382. eCollection 2025.
7
Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles.
Int J Mol Sci. 2025 Feb 11;26(4):1525. doi: 10.3390/ijms26041525.
9
Functional constraints of wtf killer meiotic drivers.
PLoS Genet. 2025 Feb 18;21(2):e1011534. doi: 10.1371/journal.pgen.1011534. eCollection 2025 Feb.

本文引用的文献

1
Adapting proteostasis for disease intervention.
Science. 2008 Feb 15;319(5865):916-9. doi: 10.1126/science.1141448.
2
Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10877-81. doi: 10.1073/pnas.0701634104. Epub 2007 Jun 20.
3
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.
J Biol Chem. 2007 Aug 17;282(33):24131-45. doi: 10.1074/jbc.M702824200. Epub 2007 Jun 19.
4
Small molecules enhance autophagy and reduce toxicity in Huntington's disease models.
Nat Chem Biol. 2007 Jun;3(6):331-8. doi: 10.1038/nchembio883. Epub 2007 May 7.
6
The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation.
Biochemistry. 2007 Feb 13;46(6):1503-10. doi: 10.1021/bi061853s.
7
Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes.
PLoS Biol. 2006 Dec;4(12):e417. doi: 10.1371/journal.pbio.0040417.
8
The roles of intracellular protein-degradation pathways in neurodegeneration.
Nature. 2006 Oct 19;443(7113):780-6. doi: 10.1038/nature05291.
9
The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions.
Nat Cell Biol. 2006 Oct;8(10):1155-62. doi: 10.1038/ncb1477. Epub 2006 Sep 17.
10
Opposing activities protect against age-onset proteotoxicity.
Science. 2006 Sep 15;313(5793):1604-10. doi: 10.1126/science.1124646. Epub 2006 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验