Suppr超能文献

具有输出反馈的自适应模糊控制用于单输入单输出非线性系统的H无穷跟踪

Adaptive fuzzy control with output feedback for H infinity tracking of SISO nonlinear systems.

作者信息

Rigatos Gerasimos G

机构信息

Unit of Industrial Automation, Industrial Systems Institute, Stadiou str., Rion Patras, Greece.

出版信息

Int J Neural Syst. 2008 Aug;18(4):305-20. doi: 10.1142/S0129065708001610.

Abstract

Observer-based adaptive fuzzy H(infinity) control is proposed to achieve H(infinity) tracking performance for a class of nonlinear systems, which are subject to model uncertainty and external disturbances and in which only a measurement of the output is available. The key ideas in the design of the proposed controller are (i) to transform the nonlinear control problem into a regulation problem through suitable output feedback, (ii) to design a state observer for the estimation of the non-measurable elements of the system's state vector, (iii) to design neuro-fuzzy approximators that receive as inputs the parameters of the reconstructed state vector and give as output an estimation of the system's unknown dynamics, (iv) to use an H(infinity) control term for the compensation of external disturbances and modelling errors, (v) to use Lyapunov stability analysis in order to find the learning law for the neuro-fuzzy approximators, and a supervisory control term for disturbance and modelling error rejection. The control scheme is tested in the cart-pole balancing problem and in a DC-motor model.

摘要

提出了一种基于观测器的自适应模糊H∞控制方法,以实现一类非线性系统的H∞跟踪性能。这类非线性系统存在模型不确定性和外部干扰,且只能获得输出测量值。所提出控制器设计中的关键思想包括:(i) 通过适当的输出反馈将非线性控制问题转化为调节问题;(ii) 设计一个状态观测器来估计系统状态向量中不可测量的元素;(iii) 设计神经模糊逼近器,将重构状态向量的参数作为输入,并输出对系统未知动态的估计;(iv) 使用H∞控制项来补偿外部干扰和建模误差;(v) 利用李雅普诺夫稳定性分析来确定神经模糊逼近器的学习律,以及用于抑制干扰和建模误差的监督控制项。该控制方案在小车-摆杆平衡问题和直流电机模型中进行了测试。

相似文献

1
Adaptive fuzzy control with output feedback for H infinity tracking of SISO nonlinear systems.
Int J Neural Syst. 2008 Aug;18(4):305-20. doi: 10.1142/S0129065708001610.
4
H∞ synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach.
ISA Trans. 2011 Oct;50(4):548-56. doi: 10.1016/j.isatra.2011.06.001. Epub 2011 Jul 8.
5
Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
IEEE Trans Syst Man Cybern B Cybern. 2009 Feb;39(1):142-55. doi: 10.1109/TSMCB.2008.2002854.
6
Adaptive neural control for strict-feedback nonlinear systems without backstepping.
IEEE Trans Neural Netw. 2009 Jul;20(7):1204-9. doi: 10.1109/TNN.2009.2020982. Epub 2009 May 27.
7
Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems.
IEEE Trans Syst Man Cybern B Cybern. 2010 Dec;40(6):1447-59. doi: 10.1109/TSMCB.2009.2039642. Epub 2010 Feb 17.
8
Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems.
IEEE Trans Neural Netw. 2005 Jul;16(4):853-61. doi: 10.1109/TNN.2005.849824.
9
Self-organizing adaptive fuzzy neural control for a class of nonlinear systems.
IEEE Trans Neural Netw. 2007 Jul;18(4):1232-41. doi: 10.1109/TNN.2007.899178.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验