Rigatos Gerasimos G
Unit of Industrial Automation, Industrial Systems Institute, Stadiou str., Rion Patras, Greece.
Int J Neural Syst. 2008 Aug;18(4):305-20. doi: 10.1142/S0129065708001610.
Observer-based adaptive fuzzy H(infinity) control is proposed to achieve H(infinity) tracking performance for a class of nonlinear systems, which are subject to model uncertainty and external disturbances and in which only a measurement of the output is available. The key ideas in the design of the proposed controller are (i) to transform the nonlinear control problem into a regulation problem through suitable output feedback, (ii) to design a state observer for the estimation of the non-measurable elements of the system's state vector, (iii) to design neuro-fuzzy approximators that receive as inputs the parameters of the reconstructed state vector and give as output an estimation of the system's unknown dynamics, (iv) to use an H(infinity) control term for the compensation of external disturbances and modelling errors, (v) to use Lyapunov stability analysis in order to find the learning law for the neuro-fuzzy approximators, and a supervisory control term for disturbance and modelling error rejection. The control scheme is tested in the cart-pole balancing problem and in a DC-motor model.
提出了一种基于观测器的自适应模糊H∞控制方法,以实现一类非线性系统的H∞跟踪性能。这类非线性系统存在模型不确定性和外部干扰,且只能获得输出测量值。所提出控制器设计中的关键思想包括:(i) 通过适当的输出反馈将非线性控制问题转化为调节问题;(ii) 设计一个状态观测器来估计系统状态向量中不可测量的元素;(iii) 设计神经模糊逼近器,将重构状态向量的参数作为输入,并输出对系统未知动态的估计;(iv) 使用H∞控制项来补偿外部干扰和建模误差;(v) 利用李雅普诺夫稳定性分析来确定神经模糊逼近器的学习律,以及用于抑制干扰和建模误差的监督控制项。该控制方案在小车-摆杆平衡问题和直流电机模型中进行了测试。