Suppr超能文献

Path-independent integrals to identify localized plastic events in two dimensions.

作者信息

Talamali Mehdi, Petäjä Viljo, Vandembroucq Damien, Roux Stéphane

机构信息

Unité Mixte CNRS-Saint-Gobain Surface du Verre et Interfaces, 39 Quai Lucien Lefranc, 93303 Aubervilliers cedex, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016109. doi: 10.1103/PhysRevE.78.016109. Epub 2008 Jul 22.

Abstract

We use a power expansion representation of plane-elasticity complex potentials due to Kolossov and Muskhelishvili to compute the elastic fields induced by a localized plastic deformation event. Far from its center, the dominant contributions correspond to first-order singularities of quadrupolar and dipolar symmetry which can be associated, respectively, with pure deviatoric and pure volumetric plastic strain of an equivalent circular inclusion. By construction of holomorphic functions from the displacement field and its derivatives, it is possible to define path-independent Cauchy integrals which capture the amplitudes of these singularities. Analytical expressions and numerical tests on simple finite-element data are presented. The development of such numerical tools is of direct interest for the identification of local structural reorganizations, which are believed to be the key mechanisms for plasticity of amorphous materials.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验