Suppr超能文献

代谢信号传导与细胞存活的新见解:N-乙酰葡糖胺β-O-连接的作用

New insights into metabolic signaling and cell survival: the role of beta-O-linkage of N-acetylglucosamine.

作者信息

Ngoh Gladys A, Jones Steven P

机构信息

Institute of Molecular Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.

出版信息

J Pharmacol Exp Ther. 2008 Dec;327(3):602-9. doi: 10.1124/jpet.108.143263. Epub 2008 Sep 3.

Abstract

The involvement of glucose in fundamental metabolic pathways represents a core element of biology. Late in the 20th century, a unique glucose-derived signal was discovered, which appeared to be involved in a variety of cellular processes, including mitosis, transcription, insulin signaling, stress responses, and potentially, Alzheimer's disease, and diabetes. By definition, this glucose-fed signaling system was a post-translational modification to proteins. However, unlike classical cotranslational N-glycosylation occurring in the endoplasmic reticulum and Golgi apparatus, this process occurs elsewhere throughout the cell in a highly dynamic fashion, similar to the quintessential post-translational modification, phosphorylation. This more recently described post-translational modification, the beta-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to nucleocytoplasmic proteins, represents an under-investigated area of biology. This signaling system operates in all of the tissues examined and seems to have persisted throughout all multicellular eukaryotes. Thus, it comes with little surprise that O-GlcNAc signaling is an integral system and viable target for biomedical investigation. This system may be a boundless source for insight into a variety of diseases and yield numerous opportunities for drug design. This Perspective will address recent insights into O-GlcNAc signaling in the cardiovascular system as a paradigm for its involvement in other biological systems.

摘要

葡萄糖参与基本代谢途径是生物学的一个核心要素。20世纪后期,人们发现了一种独特的源自葡萄糖的信号,它似乎参与了多种细胞过程,包括有丝分裂、转录、胰岛素信号传导、应激反应,以及可能涉及的阿尔茨海默病和糖尿病。根据定义,这种由葡萄糖驱动的信号系统是对蛋白质的一种翻译后修饰。然而,与在内质网和高尔基体中发生的经典共翻译N-糖基化不同,这个过程以高度动态的方式在细胞内的其他地方发生,类似于典型的翻译后修饰——磷酸化。这种最近才被描述的翻译后修饰,即N-乙酰葡糖胺与核质蛋白的β-O-连接(即O-GlcNAc),代表了生物学中一个研究不足的领域。这个信号系统在所有被检查的组织中都起作用,并且似乎在所有多细胞真核生物中都一直存在。因此,O-GlcNAc信号传导是一个完整的系统且是生物医学研究的可行靶点也就不足为奇了。这个系统可能是深入了解各种疾病的无尽源泉,并为药物设计带来众多机会。本观点将阐述对心血管系统中O-GlcNAc信号传导的最新见解,以此作为其参与其他生物系统的范例。

相似文献

1
New insights into metabolic signaling and cell survival: the role of beta-O-linkage of N-acetylglucosamine.
J Pharmacol Exp Ther. 2008 Dec;327(3):602-9. doi: 10.1124/jpet.108.143263. Epub 2008 Sep 3.
2
O-GlcNAc signaling in the cardiovascular system.
Circ Res. 2010 Jul 23;107(2):171-85. doi: 10.1161/CIRCRESAHA.110.224675.
4
O-GlcNAc and the cardiovascular system.
Pharmacol Ther. 2014 Apr;142(1):62-71. doi: 10.1016/j.pharmthera.2013.11.005. Epub 2013 Nov 25.
5
Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system.
Am J Physiol Heart Circ Physiol. 2009 Jan;296(1):H13-28. doi: 10.1152/ajpheart.01056.2008. Epub 2008 Nov 21.
6
The hexosamine signaling pathway: deciphering the "O-GlcNAc code".
Sci STKE. 2005 Nov 29;2005(312):re13. doi: 10.1126/stke.3122005re13.
7
β-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3.
J Biol Chem. 2012 Apr 6;287(15):12195-203. doi: 10.1074/jbc.M111.315804. Epub 2012 Feb 27.
9
Role of -Linked -Acetylglucosamine Protein Modification in Cellular (Patho)Physiology.
Physiol Rev. 2021 Apr 1;101(2):427-493. doi: 10.1152/physrev.00043.2019. Epub 2020 Jul 30.
10
Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system.
Cardiovasc Res. 2007 Jan 15;73(2):288-97. doi: 10.1016/j.cardiores.2006.07.018. Epub 2006 Jul 29.

引用本文的文献

1
An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease.
Front Mol Biosci. 2021 Nov 16;8:751637. doi: 10.3389/fmolb.2021.751637. eCollection 2021.
2
Cardiomyocyte Oga haploinsufficiency increases O-GlcNAcylation but hastens ventricular dysfunction following myocardial infarction.
PLoS One. 2020 Nov 30;15(11):e0242250. doi: 10.1371/journal.pone.0242250. eCollection 2020.
4
High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation.
Biochem J. 2015 Apr 1;467(1):115-26. doi: 10.1042/BJ20141018.
5
Protein O-GlcNAcylation and cardiovascular (patho)physiology.
J Biol Chem. 2014 Dec 12;289(50):34449-56. doi: 10.1074/jbc.R114.585984. Epub 2014 Oct 21.
6
MicroRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression.
J Biol Chem. 2014 Oct 24;289(43):29665-76. doi: 10.1074/jbc.M114.578682. Epub 2014 Sep 2.
8
Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress.
Anal Biochem. 2014 Jul 15;457:8-18. doi: 10.1016/j.ab.2014.04.008. Epub 2014 Apr 18.
9
Regulation of cancer metabolism by O-GlcNAcylation.
Glycoconj J. 2014 Apr;31(3):185-91. doi: 10.1007/s10719-013-9515-5. Epub 2013 Dec 10.
10
O-GlcNAc and the cardiovascular system.
Pharmacol Ther. 2014 Apr;142(1):62-71. doi: 10.1016/j.pharmthera.2013.11.005. Epub 2013 Nov 25.

本文引用的文献

1
A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo.
Nat Chem Biol. 2008 Aug;4(8):483-90. doi: 10.1038/nchembio.96. Epub 2008 Jun 29.
2
Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition.
J Mol Cell Cardiol. 2008 Aug;45(2):313-25. doi: 10.1016/j.yjmcc.2008.04.009. Epub 2008 May 2.
3
Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury.
Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H335-42. doi: 10.1152/ajpheart.01259.2007. Epub 2008 May 9.
4
Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging.
Anal Bioanal Chem. 2008 Apr;390(8):2089-97. doi: 10.1007/s00216-008-1950-y. Epub 2008 Mar 28.
5
Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2.
Am J Physiol Cell Physiol. 2008 Jun;294(6):C1509-20. doi: 10.1152/ajpcell.00456.2007. Epub 2008 Mar 26.
6
AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation.
J Biol Chem. 2008 May 9;283(19):13009-20. doi: 10.1074/jbc.M801222200. Epub 2008 Mar 19.
7
Hepatic glucose sensing via the CREB coactivator CRTC2.
Science. 2008 Mar 7;319(5868):1402-5. doi: 10.1126/science.1151363.
8
Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance.
Nature. 2008 Feb 21;451(7181):964-9. doi: 10.1038/nature06668.
9
Cardioprotection by N-acetylglucosamine linkage to cellular proteins.
Circulation. 2008 Mar 4;117(9):1172-82. doi: 10.1161/CIRCULATIONAHA.107.730515. Epub 2008 Feb 19.
10
Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells.
Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):651-7. doi: 10.1161/ATVBAHA.107.159533. Epub 2008 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验