Suppr超能文献

隐式相关数据的上下文敏感关联:一种情节创建方法。

Context-sensitive correlation of implicitly related data: an episode creation methodology.

作者信息

Son Roderick Y, Taira Ricky K, Kangarloo Hooshang, Cárdenas Alfonso F

机构信息

Medical Imaging Informatics Group, University of California, Los Angeles, Los Angeles, CA 90024, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):549-60. doi: 10.1109/TITB.2008.917901.

Abstract

Episode creation is the task of classifying medical events and related clinical data to high-level concepts, such as diseases. Challenges in episode creation result in part because of data, in the patient record, only implicitly being associated with their respective episodes. Furthermore, traditional approaches have been limited to using feature-poor claims records to generate episodes. The accurate correlation of data to their episodes is valuable in health outcomes research to discern resource utilization with respect to medical conditions. This paper describes a combinatorial optimization approach for constructing episodes, which supports the incorporation of heterogeneous data types. Aspects of this approach include an episode model for characterizing the generation of data elements as a result of a process, a methodology for identifying the relationships between implicit processes and the data elements generated by the processes, a measure for evaluating candidate episode configurations, and an energy-minimization methodology for addressing episode creation. An implementation of this work, called Episode Creation Version 2 (EC2), has been applied on patient records with various episode types, which present with knee pain. EC2 demonstrated data element classification precision and recall scores of 78% and 82%, respectively. Significant improvements in precision and recall were observed over a traditional healthcare services approach.

摘要

事件创建是将医学事件和相关临床数据分类到诸如疾病等高级概念的任务。事件创建中的挑战部分源于数据,在患者记录中,数据仅与各自的事件存在隐含关联。此外,传统方法仅限于使用特征匮乏的索赔记录来生成事件。数据与其事件的准确关联在健康结果研究中对于辨别医疗状况的资源利用情况很有价值。本文描述了一种用于构建事件的组合优化方法,该方法支持纳入异构数据类型。此方法的各个方面包括一个事件模型,用于将数据元素的生成表征为一个过程的结果;一种方法,用于识别隐式过程与这些过程生成的数据元素之间的关系;一种用于评估候选事件配置的度量;以及一种用于解决事件创建的能量最小化方法。这项工作的一个实现版本,称为事件创建版本2(EC2),已应用于患有各种类型膝关节疼痛的患者记录。EC2的数据元素分类精度和召回率分别为78%和82%。与传统医疗服务方法相比,精度和召回率有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验