Suppr超能文献

决策流形——一种基于自组织的监督学习算法。

Decision manifolds--a supervised learning algorithm based on self-organization.

作者信息

Polzlbauer Georg, Lidy Thomas, Rauber Andreas

机构信息

Institute of Software Technology and Interactive Systems, Vienna University of Technology, Vienna 1040, Austria.

出版信息

IEEE Trans Neural Netw. 2008 Sep;19(9):1518-30. doi: 10.1109/TNN.2008.2000449.

Abstract

In this paper, we present a neural classifier algorithm that locally approximates the decision surface of labeled data by a patchwork of separating hyperplanes, which are arranged under certain topological constraints similar to those of self-organizing maps (SOMs). We take advantage of the fact that these boundaries can often be represented by linear ones connected by a low-dimensional nonlinear manifold, thus influencing the placement of the separators. The resulting classifier allows for a voting scheme that averages over the classification results of neighboring hyperplanes. Our algorithm is computationally efficient both in terms of training and classification. Further, we present a model selection method to estimate the topology of the classification boundary. We demonstrate the algorithm's usefulness on several artificial and real-world data sets and compare it to the state-of-the-art supervised learning algorithms.

摘要

在本文中,我们提出了一种神经分类器算法,该算法通过分离超平面的拼凑来局部逼近标记数据的决策表面,这些超平面在类似于自组织映射(SOM)的某些拓扑约束下排列。我们利用这样一个事实,即这些边界通常可以由通过低维非线性流形连接的线性边界表示,从而影响分隔器的放置。由此产生的分类器允许一种投票方案,该方案对相邻超平面的分类结果进行平均。我们的算法在训练和分类方面都具有计算效率。此外,我们提出了一种模型选择方法来估计分类边界的拓扑结构。我们在几个人工和真实世界的数据集上展示了该算法的有效性,并将其与当前最先进的监督学习算法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验