Suppr超能文献

决策流形——一种基于自组织的监督学习算法。

Decision manifolds--a supervised learning algorithm based on self-organization.

作者信息

Polzlbauer Georg, Lidy Thomas, Rauber Andreas

机构信息

Institute of Software Technology and Interactive Systems, Vienna University of Technology, Vienna 1040, Austria.

出版信息

IEEE Trans Neural Netw. 2008 Sep;19(9):1518-30. doi: 10.1109/TNN.2008.2000449.

Abstract

In this paper, we present a neural classifier algorithm that locally approximates the decision surface of labeled data by a patchwork of separating hyperplanes, which are arranged under certain topological constraints similar to those of self-organizing maps (SOMs). We take advantage of the fact that these boundaries can often be represented by linear ones connected by a low-dimensional nonlinear manifold, thus influencing the placement of the separators. The resulting classifier allows for a voting scheme that averages over the classification results of neighboring hyperplanes. Our algorithm is computationally efficient both in terms of training and classification. Further, we present a model selection method to estimate the topology of the classification boundary. We demonstrate the algorithm's usefulness on several artificial and real-world data sets and compare it to the state-of-the-art supervised learning algorithms.

摘要

在本文中,我们提出了一种神经分类器算法,该算法通过分离超平面的拼凑来局部逼近标记数据的决策表面,这些超平面在类似于自组织映射(SOM)的某些拓扑约束下排列。我们利用这样一个事实,即这些边界通常可以由通过低维非线性流形连接的线性边界表示,从而影响分隔器的放置。由此产生的分类器允许一种投票方案,该方案对相邻超平面的分类结果进行平均。我们的算法在训练和分类方面都具有计算效率。此外,我们提出了一种模型选择方法来估计分类边界的拓扑结构。我们在几个人工和真实世界的数据集上展示了该算法的有效性,并将其与当前最先进的监督学习算法进行了比较。

相似文献

2
SemiBoost: boosting for semi-supervised learning.半增强算法:用于半监督学习的增强算法
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2000-14. doi: 10.1109/TPAMI.2008.235.
3
The S(2)-Ensemble Fusion Algorithm.S(2)-集合融合算法。
Int J Neural Syst. 2011 Dec;21(6):505-25. doi: 10.1142/S0129065711003012.
4
Iterative least squares functional networks classifier.迭代最小二乘函数网络分类器
IEEE Trans Neural Netw. 2007 May;18(3):844-50. doi: 10.1109/TNN.2007.891632.
5
Geometric decision tree.几何决策树
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):181-92. doi: 10.1109/TSMCB.2011.2163392. Epub 2011 Sep 1.
6
Local-learning-based feature selection for high-dimensional data analysis.基于局部学习的高维数据分析特征选择。
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1610-26. doi: 10.1109/TPAMI.2009.190.
8
Supervised Gaussian process latent variable model for dimensionality reduction.用于降维的监督高斯过程潜在变量模型。
IEEE Trans Syst Man Cybern B Cybern. 2011 Apr;41(2):425-34. doi: 10.1109/TSMCB.2010.2057422. Epub 2010 Aug 9.
9
The parameterless self-organizing map algorithm.无参数自组织映射算法
IEEE Trans Neural Netw. 2006 Mar;17(2):305-16. doi: 10.1109/TNN.2006.871720.
10
Joint learning of labels and distance metric.标签与距离度量的联合学习。
IEEE Trans Syst Man Cybern B Cybern. 2010 Jun;40(3):973-8. doi: 10.1109/TSMCB.2009.2034632. Epub 2009 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验