Suppr超能文献

一种用于社区研究的绝经状态分类实用方法。

A pragmatic approach to the classification of menopausal status for community-based research.

作者信息

Bell Robin J, Lijovic Marijana, Fradkin Pam, Davis Susan R

机构信息

Department of Medicine, Women's Health Program, Central and Eastern Clinical School, Monash Medical School, Alfred Hospital, Prahran, Victoria, Australia.

出版信息

Menopause. 2008 Sep-Oct;15(5):978-83. doi: 10.1097/gme.0b013e318162c487.

Abstract

OBJECTIVE

The aim of this article was to describe a pragmatic approach to the menopausal status classification of clinical research study participants that allows for women who have gynecological circumstances that mask their natural menstrual pattern.

DESIGN

We demonstrate the application of an algorithm for the Health and Wellbeing After Breast Cancer study based on self-reported menstrual cycle pattern, gynecological history, presence or absence of vasomotor symptoms, and systemic hormone use to classify women with newly diagnosed breast cancer as premenopausal, perimenopausal, or postmenopausal for research purposes.

RESULTS

Within 12 months of their breast cancer diagnosis, 1,684 participants, mean +/- SD age 57.4 +/- 11.9 years, completed a comprehensive women's health questionnaire. Menopausal status in 71.8% of the women was classified by reported bilateral oophorectomy, age, greater than 12 months of amenorrhea, or regular menstrual cycles and absence of symptoms. Status in the remainder was classified by progression through the decision tree.

CONCLUSIONS

The Health and Wellbeing After Breast Cancer study menopausal classification algorithm is a useful tool for research involving female participants that allows for the classification of women who have had a hysterectomy and/or use systemic hormonal contraception or hormone therapy.

摘要

目的

本文旨在描述一种实用的方法,用于对临床研究参与者的绝经状态进行分类,该方法适用于那些因妇科情况而掩盖其自然月经模式的女性。

设计

我们展示了一种基于自我报告的月经周期模式、妇科病史、是否存在血管舒缩症状以及全身激素使用情况的算法在乳腺癌后健康与福祉研究中的应用,以便将新诊断为乳腺癌的女性在研究中分类为绝经前、围绝经期或绝经后。

结果

在乳腺癌诊断后的12个月内,1684名参与者(平均年龄±标准差为57.4±11.9岁)完成了一份全面的女性健康问卷。71.8%的女性的绝经状态通过报告的双侧卵巢切除术、年龄、闭经超过12个月、规律月经周期且无症状来分类。其余女性的状态通过决策树进行分类。

结论

乳腺癌后健康与福祉研究的绝经分类算法是一项对涉及女性参与者的研究有用的工具,它能够对接受子宫切除术和/或使用全身激素避孕或激素治疗的女性进行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验