Cousin Fabrice, Cabuil Valérie, Grillo Isabelle, Levitz Pierre
Laboratoire Leon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette, France.
Langmuir. 2008 Oct 21;24(20):11422-30. doi: 10.1021/la8015595. Epub 2008 Sep 10.
We describe the phase behavior of an aqueous mixture of discotic nanoparticles of laponite and spherical magnetic nanoparticles of maghemite. To obtain stable mixtures from a chemical point of view, the maghemite nanoparticles are first coated by a thin layer of silica in order to adapt their surface chemistry to that of laponite nanoparticles: this enables one to raise volume fractions of maghemite Phi mag in the laponite suspensions up to several percent. Although the system is out of equilibrium, a "fluid-solid" state diagram was established showing that the mixtures undergo a fluid-solid transition, similar to that of pure suspensions of laponite, over a given volume fraction of laponite Phi lap and over a given Phi mag. An increase in Phi mag shifts Phi lap toward the lower values. When a solid sample is just above Phi lap, the application of an external magnetic field gradient induces a solid-to-liquid transition if the sample is located not too far from Phi lap on the state diagram. The structure of the mixtures, determined either at small scale by small-angle neutron scattering (SANS) or at intermediate scales by optical microscopy, shows that the solid samples are phase separated at a local scale: they are made of densely connected domains of laponite nanoparticles surrounding liquid pockets of maghemite nanoparticles. The size of the pockets grows with time. The magnetic liquid pockets are responsible for the rupture of the solid samples when an external magnetic field gradient is applied since their deformation induces local mechanical stress, internally damaging the network formed by the solid domains of laponite. The microscopic phase separation is the result of two opposite effects: (i) entropic effects that tend to phase separate the system macroscopically when the packing entropy overcomes the orientational entropy and (ii) long-range electrostatic repulsions that freeze the system.
我们描述了锂皂石盘状纳米颗粒与磁赤铁矿球形磁性纳米颗粒的水性混合物的相行为。从化学角度获得稳定混合物时,首先用一层薄二氧化硅包覆磁赤铁矿纳米颗粒,以使它们的表面化学性质适应锂皂石纳米颗粒的表面化学性质:这使得能够将锂皂石悬浮液中磁赤铁矿的体积分数(\varPhi_{mag})提高到百分之几。尽管该系统处于非平衡状态,但建立了一个“流体 - 固体”状态图,表明在给定的锂皂石体积分数(\varPhi_{lap})和给定的(\varPhi_{mag})范围内,混合物会经历类似于纯锂皂石悬浮液的流体 - 固体转变。(\varPhi_{mag})的增加会使(\varPhi_{lap})向较低值移动。当固体样品刚好高于(\varPhi_{lap})时,如果样品在状态图上离(\varPhi_{lap})不太远,施加外部磁场梯度会引发固 - 液转变。通过小角中子散射(SANS)在小尺度下或通过光学显微镜在中间尺度下确定混合物的结构,结果表明固体样品在局部尺度上发生相分离:它们由围绕磁赤铁矿纳米颗粒液袋的锂皂石纳米颗粒紧密连接的区域组成。液袋的尺寸随时间增长。施加外部磁场梯度时,磁性液袋会导致固体样品破裂,因为它们的变形会引起局部机械应力,从而在内部破坏由锂皂石固体域形成的网络。微观相分离是两种相反效应的结果:(i)当堆积熵超过取向熵时,倾向于使系统宏观相分离的熵效应;(ii)使系统冻结的长程静电排斥作用。