Suppr超能文献

AcrB外排泵:构象循环和蠕动导致多药耐药性。

The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance.

作者信息

Seeger Markus A, Diederichs Kay, Eicher Thomas, Brandstätter Lorenz, Schiefner André, Verrey François, Pos Klaas M

机构信息

Institute of Physiology, Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.

出版信息

Curr Drug Targets. 2008 Sep;9(9):729-49. doi: 10.2174/138945008785747789.

Abstract

Antimicrobial resistance of human pathogenic bacteria is an emerging problem for global public health. This resistance is often associated with the overproduction of membrane transport proteins that are capable to pump chemotherapeutics, antibiotics, detergents, dyes and organic solvents out of the cell. In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude a large variety of cytotoxic substances from the cell membrane directly into the medium bypassing the periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump in charge of the efflux of multiple antibiotics, dyes, bile salts and detergents. The trimeric outer membrane factor (OMF) TolC forms a beta-barrel pore in the outer membrane and exhibits a long periplasmic alpha-helical conduit. The periplasmic membrane fusion protein (MFP) AcrA serves as a linker between TolC and the trimeric resistance nodulation cell division (RND) pump AcrB, located in the inner membrane acting as a proton/drug antiporter. The newly elucidated asymmetric structure of trimeric AcrB reveals three different monomer conformations representing consecutive states in a transport cycle. The monomers show tunnels with occlusions at different sites leading from the lateral side through the periplasmic porter (pore) domains towards the funnel of the trimer and TolC. The structural changes create a hydrophobic pocket in one monomer, which is not present in the other two monomers. Minocyclin and doxorubicin, both AcrB substrates, specifically bind to this pocket substantiating its role as drug binding pocket. The energy transduction from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (Asp407/Asp408/Lys940) residing in the hydrophobic transmembrane domain appear to be transduced by transmembrane helix 8 and associated with the conformational changes seen in the periplasmic domain. From the asymmetric structure a possible peristaltic pump transport mechanism based on a functional rotation of the AcrB trimer has been postulated. The novel transport model merges Jardetzky's alternate access pump mechanism with the rotating site catalysis of F(1)F(0) ATPase and suggests a working hypothesis for the transport mechanism of RND transporters in general.

摘要

人类病原菌的抗微生物耐药性是全球公共卫生领域一个新出现的问题。这种耐药性通常与膜转运蛋白的过度产生有关,这些膜转运蛋白能够将化疗药物、抗生素、去污剂、染料和有机溶剂泵出细胞。在革兰氏阴性菌如大肠杆菌和铜绿假单胞菌中,三联体多药外排系统将多种细胞毒性物质从细胞膜直接排出到培养基中,绕过周质和外膜。在大肠杆菌中,三联体外排系统AcrA/AcrB/TolC负责多种抗生素、染料、胆汁盐和去污剂的外排。三聚体外膜因子(OMF)TolC在外膜中形成一个β桶状孔,并呈现出一个长的周质α螺旋通道。周质膜融合蛋白(MFP)AcrA作为TolC与三聚体耐药结节细胞分裂(RND)泵AcrB之间的连接物,AcrB位于内膜中,作为质子/药物反向转运体。新阐明的三聚体AcrB的不对称结构揭示了三种不同的单体构象,代表了转运循环中的连续状态。单体显示出在不同位点有阻塞的通道,从侧面穿过周质转运(孔)结构域通向三聚体的漏斗和TolC。结构变化在一个单体中产生了一个疏水口袋,其他两个单体中不存在。米诺环素和阿霉素都是AcrB的底物,它们特异性地结合到这个口袋,证实了其作为药物结合口袋的确切作用。从质子动力学到药物外排的能量转导包括质子在跨膜部分的结合(和释放)。在疏水性跨膜结构域中存在的一组必需的、可滴定的残基(Asp407/Asp408/Lys940)内观察到的构象变化似乎是由跨膜螺旋8传导的,并与周质结构域中观察到的构象变化相关。基于AcrB三聚体的功能旋转,从不对称结构推测出一种可能的蠕动泵转运机制。这种新的转运模型将Jardetzky的交替通道泵机制与F(1)F(0)ATP酶的旋转位点催化相结合,并总体上为RND转运体的转运机制提出了一个可行的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验