Gunsten Sean, Mikols Cassandra L, Grayson Mitchell H, Schwendener Reto A, Agapov Eugene, Tidwell Rose M, Cannon Carolyn L, Brody Steven L, Walter Michael J
Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
Immunology. 2009 Apr;126(4):500-13. doi: 10.1111/j.1365-2567.2008.02923.x. Epub 2008 Sep 6.
A protective immune response to a respiratory viral infection requires a series of coordinated cellular and molecular responses. We have previously demonstrated that increased expression of airway epithelial cell interleukin (IL)-12 p80, a macrophage chemoattractant, is associated with human respiratory viral infection and mediates post-viral mortality in the mouse. To better understand the role of IL-12 p80-dependent macrophage chemotaxis in mediating viral immunity, we generated a transgenic mouse strain utilizing a promoter to drive IL-12 p40 gene expression in the airway epithelium. This transgenic strain secreted biologically active IL-12 p80 in a lung-specific manner, and demonstrated a selective increase in the number of resident, unactivated airway macrophages at baseline. Following infection with a sublethal dose of mouse parainfluenza virus type 1 (Sendai virus), the transgenic mice demonstrated an earlier peak and decline in the number of airway inflammatory cells. The transgenic mice were resistant to a lethal dose of virus and this viral resistance was dependent on the increased number of airway macrophages at baseline as partial depletion prior to infection abrogated this phenotype. The survival advantage in the transgenic mice was independent of viral load but was associated with a more rapid decline in the number of airway inflammatory cells and concentrations of multiple chemokines including the CC chemokine ligand 2 (CCL2)/JE, CCL3/macrophage inflammatory protein (MIP)-1alpha, CCL4/MIP-1beta, and CCL5/RANTES. Collectively, these results suggest that IL-12 p80-driven increases in the number of resident airway macrophages prime the host for a protective immune response that can confer increased survival following a lethal respiratory viral infection.
对呼吸道病毒感染的保护性免疫反应需要一系列协调的细胞和分子反应。我们之前已经证明,气道上皮细胞白细胞介素(IL)-12 p80(一种巨噬细胞趋化因子)表达增加与人类呼吸道病毒感染相关,并介导小鼠病毒感染后的死亡率。为了更好地理解IL-12 p80依赖性巨噬细胞趋化作用在介导病毒免疫中的作用,我们构建了一种转基因小鼠品系,利用启动子驱动气道上皮细胞中IL-12 p40基因的表达。该转基因品系以肺特异性方式分泌生物活性IL-12 p80,并在基线时显示驻留的未活化气道巨噬细胞数量选择性增加。用亚致死剂量的1型小鼠副流感病毒(仙台病毒)感染后,转基因小鼠气道炎症细胞数量的峰值出现更早且下降更快。转基因小鼠对致死剂量的病毒具有抗性,这种病毒抗性依赖于基线时气道巨噬细胞数量的增加,因为感染前的部分清除消除了这种表型。转基因小鼠的生存优势与病毒载量无关,但与气道炎症细胞数量以及包括CC趋化因子配体2(CCL2)/JE、CCL3/巨噬细胞炎症蛋白(MIP)-1α、CCL4/MIP-1β和CCL5/调节激活正常T细胞表达和分泌因子(RANTES)在内的多种趋化因子浓度的更快下降有关。总体而言,这些结果表明,IL-12 p80驱动的驻留气道巨噬细胞数量增加使宿主具备保护性免疫反应的能力,从而在致死性呼吸道病毒感染后提高生存率。