Suppr超能文献

医学数据中风险模式的高效发现。

Efficient discovery of risk patterns in medical data.

作者信息

Li Jiuyong, Fu Ada Wai-chee, Fahey Paul

机构信息

School of Computer and Information Science, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia.

出版信息

Artif Intell Med. 2009 Jan;45(1):77-89. doi: 10.1016/j.artmed.2008.07.008. Epub 2008 Sep 9.

Abstract

OBJECTIVE

This paper studies a problem of efficiently discovering risk patterns in medical data. Risk patterns are defined by a statistical metric, relative risk, which has been widely used in epidemiological research.

METHODS

To avoid fruitless search in the complete exploration of risk patterns, we define optimal risk pattern set to exclude superfluous patterns, i.e. complicated patterns with lower relative risk than their corresponding simpler form patterns. We prove that mining optimal risk pattern sets conforms an anti-monotone property that supports an efficient mining algorithm. We propose an efficient algorithm for mining optimal risk pattern sets based on this property. We also propose a hierarchical structure to present discovered patterns for the easy perusal by domain experts.

RESULTS

The proposed approach is compared with two well-known rule discovery methods, decision tree and association rule mining approaches on benchmark data sets and applied to a real world application. The proposed method discovers more and better quality risk patterns than a decision tree approach. The decision tree method is not designed for such applications and is inadequate for pattern exploring. The proposed method does not discover a large number of uninteresting superfluous patterns as an association mining approach does. The proposed method is more efficient than an association rule mining method. A real world case study shows that the method reveals some interesting risk patterns to medical practitioners.

CONCLUSION

The proposed method is an efficient approach to explore risk patterns. It quickly identifies cohorts of patients that are vulnerable to a risk outcome from a large data set. The proposed method is useful for exploratory study on large medical data to generate and refine hypotheses. The method is also useful for designing medical surveillance systems.

摘要

目的

本文研究医学数据中高效发现风险模式的问题。风险模式由一种统计指标——相对风险定义,该指标在流行病学研究中已被广泛使用。

方法

为避免在风险模式的全面探索中进行无意义的搜索,我们定义了最优风险模式集以排除多余模式,即相对风险低于其相应简单形式模式的复杂模式。我们证明挖掘最优风险模式集符合一种反单调性质,这支持了一种高效的挖掘算法。基于此性质,我们提出了一种挖掘最优风险模式集的高效算法。我们还提出了一种层次结构来展示发现的模式,以便领域专家轻松查阅。

结果

将所提出的方法与两种著名的规则发现方法(决策树和关联规则挖掘方法)在基准数据集上进行比较,并应用于实际应用。所提出的方法比决策树方法发现了更多且质量更好的风险模式。决策树方法并非为此类应用而设计,在模式探索方面存在不足。所提出的方法不像关联挖掘方法那样发现大量无趣的多余模式。所提出的方法比关联规则挖掘方法更高效。一个实际案例研究表明,该方法向医学从业者揭示了一些有趣的风险模式。

结论

所提出的方法是探索风险模式的一种有效途径。它能快速从大数据集中识别出易出现风险结果的患者群体。所提出的方法对于大型医学数据的探索性研究以生成和完善假设很有用。该方法对于设计医学监测系统也很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验