Bae Soo Hyun, Juang Biing-Hwang
Center for Signal and Image Processing, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA.
IEEE Trans Image Process. 2008 Oct;17(10):1837-48. doi: 10.1109/TIP.2008.2002308.
A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.
研究了一种针对多维离散源的多维增量解析算法(MDIP),它是莱姆佩尔 - 齐夫编码算法的推广。它由三个基本组成方案构成,即最大抽取匹配、多维源编码的层次结构和字典扩充。作为莱姆佩尔 - 齐夫算法中最长匹配搜索的对应物,研究了两类最大抽取匹配。此外,还研究了用于估计源统计信息的字典扩充方案的潜在行为。对于一个m维源,在每个编码周期将m个扩充补丁附加到字典中,因此需要向解码器传输大量信息。源编码算法的层次结构特性通过在该方案中依次纳入低维编码过程解决了这个问题。关于通用有损源编码器,我们提出了两种失真函数,即局部平均失真和针对每个源符号具有一组阈值水平的局部极小极大失真。为了进行性能评估,我们基于MDIP实现了三种图像压缩算法;一种是无损的,其他两种是有损的。无损图像压缩算法的性能并不比莱姆佩尔 - 齐夫 - 韦尔奇编码更好,但实验表明它在捕捉源结构方面具有效率。两种有损图像压缩算法分别使用这两种失真函数实现。基于局部平均失真的算法在最小化信号失真方面效率很高,但与其他压缩算法相比,基于局部极小极大失真的算法生成的图像具有良好的感知保真度。我们的见解激发了未来对多维离散源特征提取的研究。