Subrahmanyam G R K S, Rajagopalan A N, Aravind R
IEEE Trans Image Process. 2008 Oct;17(10):1969-74. doi: 10.1109/TIP.2008.2002160.
This correspondence proposes a recursive algorithm for noise reduction in synthetic aperture radar imagery. Excellent despeckling in conjunction with feature preservation is achieved by incorporating a discontinuity-adaptive Markov random field prior within the unscented Kalman filter framework through importance sampling. The performance of this method is demonstrated on both synthetic and real examples.
本文通信提出了一种用于合成孔径雷达图像降噪的递归算法。通过在无迹卡尔曼滤波器框架内采用重要性采样纳入不连续自适应马尔可夫随机场先验,实现了出色的去斑效果并保留了特征。该方法的性能在合成和真实示例上均得到了验证。