Sander Ole, Henss Anja, Näther Christian, Würtele Christian, Holthausen Max C, Schindler Siegfried, Tuczek Felix
Institut für Anorganische Chemie, Christian Albrechts Universität Kiel, Max-Eyth Strasse 2, 24098 Kiel (Germany).
Chemistry. 2008;14(31):9714-29. doi: 10.1002/chem.200800799.
Detailed mechanistic studies on the ligand hydroxylation reaction mediated by a copper bis(imine) complex are presented. Starting from a structural analysis of the CuI complex and the CuII product with a hydroxylated ligand, the optical absorption and vibrational spectra of starting material and product are analyzed. Kinetic analysis of the ligand hydroxylation reaction shows that O2 binding is the rate-limiting step. The reaction proceeds much faster in methanol than in acetonitrile. Moreover, an inverse kinetic isotope effect (KIE) is evidenced for the reaction in acetonitrile, which is attributed to a sterically congested transition state leading to the peroxo adduct. In methanol, however, no KIE is observed. A DFT analysis of the oxygenation reaction mediated by the micro-eta2:eta2 peroxo core demonstrates that the major barrier after O2 binding corresponds to electrophilic attack on the arene ring. The relevant orbital interaction occurs between the sigma* orbital of the Cu2O2 unit and the HOMO of the ligand. On the basis of the activation energy for the rate-limiting step (18.3 kcal mol(-1)) this reaction is thermally allowed, in agreement with the experimental observation. The calculations also predict the presence of a stable dienone intermediate which, however, escaped experimental detection so far. Reasons for these findings are considered. The implications of the results for the mechanism of tyrosinase are discussed.
本文介绍了关于双(亚胺)铜配合物介导的配体羟基化反应的详细机理研究。从对具有羟基化配体的CuI配合物和CuII产物的结构分析入手,分析了原料和产物的光吸收光谱和振动光谱。配体羟基化反应的动力学分析表明,O2结合是限速步骤。该反应在甲醇中比在乙腈中进行得快得多。此外,在乙腈中该反应存在逆动力学同位素效应(KIE),这归因于导致过氧加合物的空间位阻过渡态。然而,在甲醇中未观察到KIE。对由微η2:η2过氧核心介导的氧化反应的DFT分析表明,O2结合后的主要障碍对应于对芳环的亲电攻击。相关的轨道相互作用发生在Cu2O2单元的σ*轨道与配体的HOMO之间。基于限速步骤的活化能(18.3 kcal mol(-1)),该反应在热学上是可行的,这与实验观察结果一致。计算还预测存在一种稳定的二烯酮中间体,然而,到目前为止尚未通过实验检测到。考虑了这些发现的原因。讨论了这些结果对酪氨酸酶作用机制的影响。