Suppr超能文献

过氧化氢在戈登链球菌与内氏放线菌竞争与合作中的作用

Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii.

作者信息

Jakubovics Nicholas S, Gill Steven R, Vickerman M Margaret, Kolenbrander Paul E

机构信息

School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.

出版信息

FEMS Microbiol Ecol. 2008 Dec;66(3):637-44. doi: 10.1111/j.1574-6941.2008.00585.x. Epub 2008 Sep 9.

Abstract

In dental plaque alpha-haemolytic streptococci, including Streptococcus gordonii, are considered beneficial for oral health. These organisms produce hydrogen peroxide (H(2)O(2)) at concentrations sufficient to kill many oral bacteria. Streptococci do not produce catalase yet tolerate H(2)O(2). We recently demonstrated that coaggregation with Actinomyces naeslundii stabilizes arginine biosynthesis in S. gordonii. Protein arginine residues are sensitive to oxidation by H(2)O(2). Here, the ability of A. naeslundii to protect S. gordonii against self-produced H(2)O(2) was investigated. Coaggregation with A. naeslundii enabled S. gordonii to grow in the absence of arginine, and promoted survival of S. gordonii following growth with or without added arginine. Arginine-replete S. gordonii monocultures contained 20-30 microM H(2)O(2) throughout exponential growth. Actinomyces naeslundii did not produce H(2)O(2) but synthesized catalase, removed H(2)O(2) from coaggregate cultures and decreased protein oxidation in S. gordonii. On solid medium, S. gordonii inhibited growth of A. naeslundii; exogenous catalase overcame this inhibition. In coaggregate cultures, A. naeslundii cell numbers were >90% lower than in monocultures after 24 h. These results indicate that coaggregation with A. naeslundii protects S. gordonii from oxidative damage. However, high cell densities of S. gordonii inhibit A. naeslundii. Therefore, H(2)O(2) may drive these organisms towards an ecologically balanced community in natural dental plaque.

摘要

在牙菌斑中,包括戈登链球菌在内的α-溶血链球菌被认为对口腔健康有益。这些微生物产生的过氧化氢(H₂O₂)浓度足以杀死许多口腔细菌。链球菌不产生过氧化氢酶,但能耐受H₂O₂。我们最近证明,与内氏放线菌的共聚作用可稳定戈登链球菌中的精氨酸生物合成。蛋白质精氨酸残基对H₂O₂氧化敏感。在此,研究了内氏放线菌保护戈登链球菌免受自身产生的H₂O₂损伤的能力。与内氏放线菌的共聚作用使戈登链球菌能够在无精氨酸的情况下生长,并促进了添加或未添加精氨酸培养的戈登链球菌的存活。在整个指数生长期,富含精氨酸的戈登链球菌单培养物中含有20 - 30微摩尔的H₂O₂。内氏放线菌不产生H₂O₂,但合成过氧化氢酶,从共聚培养物中去除H₂O₂并减少戈登链球菌中的蛋白质氧化。在固体培养基上,戈登链球菌抑制内氏放线菌的生长;外源性过氧化氢酶克服了这种抑制作用。在共聚培养物中,24小时后内氏放线菌的细胞数量比单培养物低90%以上。这些结果表明,与内氏放线菌的共聚作用可保护戈登链球菌免受氧化损伤。然而,高细胞密度的戈登链球菌会抑制内氏放线菌。因此,H₂O₂可能会促使这些微生物在天然牙菌斑中形成生态平衡的群落。

相似文献

1
Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii.
FEMS Microbiol Ecol. 2008 Dec;66(3):637-44. doi: 10.1111/j.1574-6941.2008.00585.x. Epub 2008 Sep 9.
5
Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque.
J Bacteriol. 2003 Jun;185(11):3400-9. doi: 10.1128/JB.185.11.3400-3409.2003.
8
Critical roles of arginine in growth and biofilm development by Streptococcus gordonii.
Mol Microbiol. 2015 Jul;97(2):281-300. doi: 10.1111/mmi.13023. Epub 2015 May 20.
9
Proteases of an early colonizer can hinder Streptococcus mutans colonization in vitro.
J Dent Res. 2011 Apr;90(4):501-5. doi: 10.1177/0022034510388808. Epub 2010 Nov 18.

引用本文的文献

2
Coaggregated E. faecalis with F. nucleatum regulated environmental stress responses and inflammatory effects.
Appl Microbiol Biotechnol. 2024 May 18;108(1):336. doi: 10.1007/s00253-024-13172-9.
3
Molecular commensalism: how oral corynebacteria and their extracellular membrane vesicles shape microbiome interactions.
Front Oral Health. 2024 Apr 24;5:1410786. doi: 10.3389/froh.2024.1410786. eCollection 2024.
4
Quantifying picomoles of analyte from less than 100 live bacteria: A novel method with a buffering hydrogel as an electrochemical cell.
Electrochim Acta. 2024 Jan 20;475. doi: 10.1016/j.electacta.2023.143527. Epub 2023 Nov 22.
5
Eco-evolutionary dynamics of experimental populations under oxidative stress.
Microbiology (Reading). 2023 Nov;169(11). doi: 10.1099/mic.0.001396.
6
Anticariogenic Activity of Celastrol and Its Enhancement of Streptococcal Antagonism in Multispecies Biofilm.
Antibiotics (Basel). 2023 Jul 28;12(8):1245. doi: 10.3390/antibiotics12081245.
7
Social networking at the microbiome-host interface.
Infect Immun. 2023 Sep 14;91(9):e0012423. doi: 10.1128/iai.00124-23. Epub 2023 Aug 18.
9
Machine learning-based inverse design for electrochemically controlled microscopic gradients of O and HO.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2206321119. doi: 10.1073/pnas.2206321119. Epub 2022 Aug 1.

本文引用的文献

2
Identification of enzymes and regulatory proteins in Escherichia coli that are oxidized under nitrogen, carbon, or phosphate starvation.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18456-60. doi: 10.1073/pnas.0709368104. Epub 2007 Nov 14.
4
Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes.
J Biol Chem. 2007 Jan 12;282(2):929-37. doi: 10.1074/jbc.M607646200. Epub 2006 Nov 13.
7
Molecular characterization of subject-specific oral microflora during initial colonization of enamel.
Appl Environ Microbiol. 2006 Apr;72(4):2837-48. doi: 10.1128/AEM.72.4.2837-2848.2006.
8
Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm.
J Bacteriol. 2005 Nov;187(21):7193-203. doi: 10.1128/JB.187.21.7193-7203.2005.
9
Role of oxidative carbonylation in protein quality control and senescence.
EMBO J. 2005 Apr 6;24(7):1311-7. doi: 10.1038/sj.emboj.7600599. Epub 2005 Mar 3.
10
Free radical-mediated oxidation of free amino acids and amino acid residues in proteins.
Amino Acids. 2003 Dec;25(3-4):207-18. doi: 10.1007/s00726-003-0011-2. Epub 2003 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验